In the plasmonic metal–semiconductor systems, the interfacial structure is vital for both charge separation and photocatalytic reaction. However, the role of interfacial defects, a ubiquitous phenomenon in the metal–semiconductor heterostructure, is not well understood, especially for the hot hole-involved water oxidation reaction. Herein, we studied the effect of interfacial defects, derived from oxygen vacancies, on plasmonic photocatalytic water oxidation. In addition, we found that the plasmon-induced water oxidation activity decreased with the increase in the oxygen vacancies present at the interface, and the activity of Au/TiO2 can be restored after eliminating the defects via a post-oxidation treatment. It is elucidated that a defect state appeared below the conduction band of TiO2 as a result of interfacial defects, which acts as the electron traps and backward transfer channel for electrons to combine with the holes left at the interface. The charge recombination at defect sites leads to the shorter lifetime of hot holes, which is harmful for the kinetics-sluggish water oxidation. This work emphasizes the significance of the interface structure for the plasmon-based photocatalytic process.

1.
Q.
Wang
and
K.
Domen
,
Chem. Rev.
120
,
919
(
2020
).
2.
R.
Li
and
C.
Li
,
Adv. Catal.
60
,
1
(
2017
).
3.
S.-i.
Naya
,
T.
Kume
,
R.
Akashi
,
M.
Fujishima
, and
H.
Tada
,
J. Am. Chem. Soc.
140
,
1251
(
2018
).
4.
Y.
Li
,
Y.
Guo
,
R.
Long
,
D.
Liu
,
D.
Zhao
,
Y.
Tan
,
C.
Gao
,
S.
Shen
, and
Y.
Xiong
,
Chin. J. Catal.
39
,
453
(
2018
).
5.
H.
Zhao
,
Z.
Liang
,
X.
Liu
,
P.
Qiu
,
H.
Cui
, and
J.
Tian
,
Chin. J. Catal.
41
,
333
(
2020
).
6.
P.
Zhang
,
T.
Wang
, and
J.
Gong
,
Adv. Mater.
27
,
5328
(
2015
).
7.
8.
M. L.
Brongersma
,
N. J.
Halas
, and
P.
Nordlander
,
Nat. Nanotechnol.
10
,
25
(
2015
).
9.
T.
Tatsuma
,
H.
Nishi
, and
T.
Ishida
,
Chem. Sci.
8
,
3325
(
2017
).
10.
J. S.
DuChene
,
G.
Tagliabue
,
A. J.
Welch
,
W.-H.
Cheng
, and
H. A.
Atwater
,
Nano Lett.
18
,
2545
(
2018
).
11.
A.
Furube
,
L.
Du
,
K.
Hara
,
R.
Katoh
, and
M.
Tachiya
,
J. Am. Chem. Soc.
129
,
14852
(
2007
).
12.
J.
Ma
and
S.
Gao
,
ACS Nano
13
,
13658
(
2019
).
13.
L.
Du
,
A.
Furube
,
K.
Yamamoto
,
K.
Hara
,
R.
Katoh
, and
M.
Tachiya
,
J. Phys. Chem. C
113
,
6454
(
2009
).
14.
A. J.
Leenheer
,
P.
Narang
,
N. S.
Lewis
, and
H. A.
Atwater
,
J. Appl. Phys.
115
,
134301
(
2014
).
15.
S.
Wang
,
Y.
Gao
,
S.
Miao
,
T.
Liu
,
L.
Mu
,
R.
Li
,
F.
Fan
, and
C.
Li
,
J. Am. Chem. Soc.
139
,
11771
(
2017
).
16.
H.
Li
,
F.
Qin
,
Z.
Yang
,
X.
Cui
,
J.
Wang
, and
L.
Zhang
,
J. Am. Chem. Soc.
139
,
3513
(
2017
).
17.
C.
Li
,
T.
Wang
,
Z.-J.
Zhao
,
W.
Yang
,
J.-F.
Li
,
A.
Li
,
Z.
Yang
,
G. A.
Ozin
, and
J.
Gong
,
Angew. Chem., Int. Ed.
57
,
5278
(
2018
).
18.
S.
Wang
,
B.
Zeng
, and
C.
Li
,
Chin. J. Catal.
39
,
1219
(
2018
).
19.
H.
Tang
,
F.
Liu
,
J.
Wei
,
B.
Qiao
,
K.
Zhao
,
Y.
Su
,
C.
Jin
,
L.
Li
,
J. J.
Liu
,
J.
Wang
, and
T.
Zhang
,
Angew. Chem., Int. Ed.
55
,
10606
(
2016
).
20.
W.
Zhan
,
Q.
He
,
X.
Liu
,
Y.
Guo
,
Y.
Wang
,
L.
Wang
,
Y.
Guo
,
A. Y.
Borisevich
,
J.
Zhang
,
G.
Lu
, and
S.
Dai
,
J. Am. Chem. Soc.
138
,
16130
(
2016
).
21.
Y.
Yang
,
G.
Liu
,
J. T. S.
Irvine
, and
H.-M.
Cheng
,
Adv. Mater.
28
,
5850
(
2016
).
22.
H.
Tang
,
Y.
Su
,
B.
Zhang
,
A. F.
Lee
,
M. A.
Isaacs
,
K.
Wilson
,
L.
Li
,
Y.
Ren
,
J.
Huang
,
M.
Haruta
,
B.
Qiao
,
X.
Liu
,
C.
Jin
,
D.
Su
,
J.
Wang
, and
T.
Zhang
,
Sci. Adv.
3
,
e1700231
(
2017
).
23.
G.
Li
,
N. M.
Dimitrijevic
,
L.
Chen
,
J. M.
Nichols
,
T.
Rajh
, and
K. A.
Gray
,
J. Am. Chem. Soc.
130
,
5402
(
2008
).
24.
K.
Gelderman
,
L.
Lee
, and
S. W.
Donne
,
J. Chem. Educ.
84
,
685
(
2007
).
25.
J.
Zhu
,
F.
Fan
,
R.
Chen
,
H.
An
,
Z.
Feng
, and
C.
Li
,
Angew. Chem., Int. Ed.
54
,
9111
(
2015
).
26.
Y.
Gao
,
J.
Zhu
,
H.
An
,
P.
Yan
,
B.
Huang
,
R.
Chen
,
F.
Fan
, and
C.
Li
,
J. Phys. Chem. Lett.
8
,
1419
(
2017
).
27.
R.
Chen
,
S.
Pang
,
H.
An
,
J.
Zhu
,
S.
Ye
,
Y.
Gao
,
F.
Fan
, and
C.
Li
,
Nat. Energy
3
,
655
(
2018
).
28.
L.
Kronik
and
Y.
Shapira
,
Surf. Sci. Rep.
37
,
1
(
1999
).
29.
S. K.
Cushing
,
F.
Meng
,
J.
Zhang
,
B.
Ding
,
C. K.
Chen
,
C.-J.
Chen
,
R.-S.
Liu
,
A. D.
Bristow
,
J.
Bright
,
P.
Zheng
, and
N.
Wu
,
ACS Catal.
7
,
1742
(
2017
).
30.
S.-F.
Hung
,
F.-X.
Xiao
,
Y.-Y.
Hsu
,
N.-T.
Suen
,
H.-B.
Yang
,
H. M.
Chen
, and
B.
Liu
,
Adv. Energy Mater.
6
,
1501339
(
2016
).
31.
Y.-C.
Pu
,
W.-T.
Chen
,
M.-J.
Fang
,
Y.-L.
Chen
,
K.-A.
Tsai
,
W.-H.
Lin
, and
Y.-J.
Hsu
,
J. Mater. Chem. A.
6
,
17503
(
2018
).
32.
Y.
Kim
,
J. G.
Smith
, and
P. K.
Jain
,
Nat. Chem.
10
,
763
(
2018
).

Supplementary Material

You do not currently have access to this content.