Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modeling their responses to the charge distribution of electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born–Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential. Here, we show that this model can be treated in the framework of constrained molecular dynamics, leading to a symplectic and time-reversible algorithm for the evolution of all the degrees of freedom of the system. The computational cost and the accuracy of the new method are similar to current alternative implementations of the model. The advantage lies in the accuracy and long term stability guaranteed by the formal properties of the algorithm and in the possibility to systematically introduce additional kinematic conditions of arbitrary number and form. We illustrate the performance of the constrained dynamics approach by enforcing the electroneutrality of the electrodes in a simple capacitor consisting of two graphite electrodes separated by a slab of liquid water.

1.
A.
Groß
, “
Fundamental challenges for modeling electrochemical energy storage systems at the atomic scale
,”
Top. Curr. Chem.
376
,
17
(
2018
).
2.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Ionic liquids at electrified interfaces
,”
Chem. Rev.
114
,
2978
(
2014
).
3.
M.
Armand
and
J.-M.
Tarascon
, “
Building better batteries
,”
Nature
451
,
652
657
(
2008
).
4.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
,
845
854
(
2008
).
5.
J.
Cheng
and
M.
Sprik
, “
Alignment of electronic energy levels at electrochemical interfaces
,”
Phys. Chem. Chem. Phys.
14
,
11245
11267
(
2012
).
6.
J.
Cheng
,
X.
Liu
,
J. A.
Kattirtzi
,
J.
VandeVondele
, and
M.
Sprik
, “
Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2
,”
Angew. Chem., Int. Ed.
53
,
12046
12050
(
2014
).
7.
K.
Chan
and
J. K.
Nørskov
, “
Electrochemical barriers made simple
,”
J. Phys. Chem. Lett.
6
,
2663
2668
(
2015
).
8.
M.
Salanne
,
B.
Rotenberg
,
K.
Naoi
,
K.
Kaneko
,
P.-L.
Taberna
,
C. P.
Grey
,
B.
Dunn
, and
P.
Simon
, “
Efficient storage mechanisms for building better supercapacitors
,”
Nat. Energy
1
,
16070
(
2016
).
9.
J. I.
Siepmann
and
M.
Sprik
, “
Influence of surface-topology and electrostatic potential on water electrode systems
,”
J. Chem. Phys.
102
,
511
524
(
1995
).
10.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
, “
Electrochemical interface between an ionic liquid and a model metallic electrode
,”
J. Chem. Phys.
126
,
084704
(
2007
).
11.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
, “
On the molecular origin of supercapacitance in nanoporous carbon electrodes
,”
Nat. Mater.
11
,
306
310
(
2012
).
12.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
, “
Electronegativity-equalization method for the calculation of atomic charges in molecules
,”
J. Am. Chem. Soc.
108
,
4315
4320
(
1986
).
13.
A. K.
Rappe
and
W. A.
Goddard
 III
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
,
3358
3363
(
1991
).
14.
P. A.
Madden
and
M.
Wilson
, “
‘Covalent’ effects in ‘ionic’ systems
,”
Chem. Soc. Rev.
25
,
339
350
(
1996
).
15.
R.
Vuilleumier
,
Density Functional Theory Based Ab Initio Molecular Dynamics Using the Car-Parrinello Approach
, Lecture Notes in Physics Vol. 703 (
Springer
,
2006
), pp.
223
285
.
16.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
2474
(
1985
).
17.
A.
Coretti
,
S.
Bonella
, and
G.
Ciccotti
, “
Communication: Constrained molecular dynamics for polarizable models
,”
J. Chem. Phys.
149
,
191102
(
2018
).
18.
S.
Bonella
,
A.
Coretti
,
R.
Vuilleumier
, and
G.
Ciccotti
, “
Adiabatic motion and statistical mechanics via mass-zero constrained dynamics
,”
Phys. Chem. Chem. Phys.
(published online
2020
).
19.
L.
Scalfi
,
D. T.
Limmer
,
A.
Coretti
,
S.
Bonella
,
P. A.
Madden
,
M.
Salanne
, and
B.
Rotenberg
, “
Charge fluctuations from molecular simulations in the constant-potential ensemble
,”
Phys. Chem. Chem. Phys.
(published online
2020
).
20.
J. S.
Hub
,
B. L.
de Groot
,
H.
Grubmüller
, and
G.
Groenhof
, “
Quantifying artifacts in ewald simulations of inhomogeneous systems with a net charge
,”
J. Chem. Theory Comput.
10
,
381
390
(
2014
).
21.
D. T.
Limmer
,
C.
Merlet
,
M.
Salanne
,
D.
Chandler
,
P. A.
Madden
,
R.
van Roij
, and
B.
Rotenberg
, “
Charge fluctuations in nanoscale capacitors
,”
Phys. Rev. Lett.
111
,
106102
(
2013
).
22.
J.-P.
Ryckaert
,
A.
Bellemans
, and
G.
Ciccotti
, “
The rotation-translation coupling in diatomic molecules
,”
Mol. Phys.
44
,
979
996
(
1981
).
23.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
24.
B. J.
Leimkuhler
and
R. D.
Skeel
, “
Symplectic numerical integrators in constrained Hamiltonian systems
,”
J. Comput. Phys.
112
,
117
125
(
1994
).
25.

We recall that the Rα are fixed parameters in the potential. This prescription can be relaxed to include the location of the Gaussian charges to change but this extension of the model, that can be easily incorporated in the mass-zero constrained dynamics, is not considered here.

26.

Note that a different initialization scheme was proposed in Ref. 17. This scheme is more rigorous, but its implementation in MetalWalls turned out to be impractical. Use of the conjugate gradient minimization, on the other hand, is available in the code. This choice of initialization did not cause visible problems and has negligible additional cost.

27.
G.
Ciccotti
and
J. P.
Ryckaert
, “
Molecular dynamics simulation of rigid molecules
,”
Comput. Phys. Rep.
4
,
346
392
(
1986
).
28.
A. P.
Willard
,
S. K.
Reed
,
P. A.
Madden
, and
D.
Chandler
, “
Water at an electrochemical interface—A simulation study
,”
Faraday Discuss.
141
,
423
441
(
2009
).
29.
D. T.
Limmer
,
A. P.
Willard
,
P.
Madden
, and
D.
Chandler
, “
Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4200
4205
(
2013
).
30.
A. P.
Willard
,
D. T.
Limmer
,
P. A.
Madden
, and
D.
Chandler
, “
Characterizing heterogeneous dynamics at hydrated electrode surfaces
,”
J. Chem. Phys.
138
,
184702
(
2013
).
31.
D. T.
Limmer
and
A. P.
Willard
, “
Nanoscale heterogeneity at the aqueous electrolyte-electrode interface
,”
Chem. Phys. Lett.
620
,
144
150
(
2015
).
32.
M.
Simoncelli
,
N.
Ganfoud
,
A.
Sene
,
M.
Haefele
,
B.
Daffos
,
P.-L.
Taberna
,
M.
Salanne
,
P.
Simon
, and
B.
Rotenberg
, “
Blue energy and desalination with nanoporous carbon electrodes: Capacitance from molecular simulations to continuous models
,”
Phys. Rev. X
8
,
021024
(
2018
).
33.
J. B.
Haskins
and
J. W.
Lawson
, “
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers
,”
J. Chem. Phys.
144
,
184707
(
2016
).
34.
S.
Park
and
J. G.
McDaniel
, “
Interference of electrical double layers: Confinement effects on structure, dynamics and screening of ionic liquids
,”
J. Chem. Phys.
152
,
074709
(
2020
).
35.
Z.
Li
,
G.
Jeanmairet
,
T.
Méndez-Morales
,
B.
Rotenberg
, and
M.
Salanne
, “
Capacitive performance of water-in-salt electrolytes in supercapacitors: A simulation study
,”
J. Phys. Chem. C
122
,
23917
23924
(
2018
).
36.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
37.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
38.
T. R.
Gingrich
and
M.
Wilson
, “
On the Ewald summation of Gaussian charges for the simulation of metallic surfaces
,”
Chem. Phys. Lett.
500
,
178
183
(
2010
).
39.
Z.
Wang
,
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
, “
Evaluation of the constant potential method in simulating electric double-layer capacitors
,”
J. Chem. Phys.
141
,
184102
(
2014
).
40.
G.
Jeanmairet
,
B.
Rotenberg
,
D.
Borgis
, and
M.
Salanne
, “
Study of a water-graphene capacitor with molecular density functional theory
,”
J. Chem. Phys.
151
,
124111
(
2019
).
41.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
, “
A molecular perspective of water at metal interfaces
,”
Nat. Mater.
11
,
667
674
(
2012
).
42.
Y.-J.
Tu
,
S.
Delmerico
, and
J. G.
McDaniel
, “
Inner layer capacitance of organic electrolytes from constant voltage molecular dynamics
,”
J. Phys. Chem. C
124
,
2907
2922
(
2020
).
You do not currently have access to this content.