Transition metal oxides are of high interest in both energy storage (batteries) and production of non-fossil fuels by (photo)electrocatalysis. Their functionally crucial charge (oxidation state) changes and electrocatalytic properties are best investigated under electrochemical operation conditions. We established operando Raman spectroscopy for investigation of the atomic structure and oxidation state of a non-crystalline, hydrated, and phosphate-containing Co oxide material (CoCat), which is an electrocatalyst for the oxygen evolution reaction (OER) at neutral pH and is structurally similar to LiCoO2 of batteries. Raman spectra were collected at various sub-catalytic and catalytic electric potentials. 2H labeling suggests Co oxidation coupled to Co—OH deprotonation at catalytic potentials. 18O labeling supports O—O bond formation starting from terminally coordinated oxygen species. Two broad bands around 877 cm−1 and 1077 cm−1 are assigned to CoCat-internal H2PO4-. Raman peaks corresponding to terminal oxide (Co=O) or reactive oxygen species were not detectable; 1000–1200 cm−1 bands were instead assigned to two-phonon Raman scattering. At an increasingly positive potential, the intensity of the Raman bands decreased, which is unexpected and explained by self-absorption relating to CoCat electrochromism. A red-shift of the Co—O Raman bands with increasing potentials was described by four Gaussian bands of potential-dependent amplitudes. By linear combination of Raman band amplitudes, we can follow individually the Co(2+/3+) and Co(3+/4+) redox transitions, whereas previously published x-ray absorption spectroscopy analysis could determine only the averaged Co oxidation state. Our results show how electrochemical operando Raman spectroscopy can be employed as a potent analytical tool in mechanistic investigations on OER catalysis.

1.
D.
Abbott
, “
Keeping the energy debate clean: How do we supply the World’s energy needs?
,”
Proc. IEEE
98
(
1
),
42
66
(
2010
).
2.
N.
Armaroli
and
V.
Balzani
, “
Solar electricity and solar fuels: Status and perspectives in the context of the energy transition
,”
Chem. - Eur. J.
22
(
1
),
32
57
(
2016
).
3.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
, “
Renewable energy resources: Current status, future prospects and their enabling technology
,”
Renewable Sustainable Energy Rev.
39
,
748
764
(
2014
).
4.
M. K.
Brennaman
,
R. J.
Dillon
,
L.
Alibabaei
,
M. K.
Gish
,
C. J.
Dares
,
D. L.
Ashford
,
R. L.
House
,
G. J.
Meyer
,
J. M.
Papanikolas
, and
T. J.
Meyer
, “
Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells
,”
J. Am. Chem. Soc.
138
(
40
),
13085
13102
(
2016
).
5.
N.-T.
Suen
,
S.-F.
Hung
,
Q.
Quan
,
N.
Zhang
,
Y.-J.
Xu
, and
H. M.
Chen
, “
Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives
,”
Chem. Soc. Rev.
46
(
2
),
337
365
(
2017
).
6.
J. D.
Blakemore
,
R. H.
Crabtree
, and
G. W.
Brudvig
, “
Molecular catalysts for water oxidation
,”
Chem. Rev.
115
(
23
),
12974
13005
(
2015
).
7.
J.
Li
,
R.
Güttinger
,
R.
Moré
,
F.
Song
,
W.
Wan
, and
G. R.
Patzke
, “
Frontiers of water oxidation: The quest for true catalysts
,”
Chem. Soc. Rev.
46
(
20
),
6124
6147
(
2017
).
8.
C. H. M.
van Oversteeg
,
H. Q.
Doan
,
F. M. F.
de Groot
, and
T.
Cuk
, “
In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts
,”
Chem. Soc. Rev.
46
,
102
125
(
2017
).
9.
Y.
Surendranath
,
M. W.
Kanan
, and
D. G.
Nocera
, “
Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH
,”
J. Am. Chem. Soc.
132
(
46
),
16501
16509
(
2010
).
10.
M.
Risch
,
F.
Ringleb
,
M.
Kohlhoff
,
P.
Bogdanoff
,
P.
Chernev
,
I.
Zaharieva
, and
H.
Dau
, “
Water oxidation by amorphous cobalt-based oxides: In situ tracking of redox transitions and mode of catalysis
,”
Energy Environ. Sci.
8
(
2
),
661
674
(
2015
).
11.
R. D. L.
Smith
,
C.
Pasquini
,
S.
Loos
,
P.
Chernev
,
K.
Klingan
,
P.
Kubella
,
M. R.
Mohammadi
,
D.
Gonzalez-Flores
, and
H.
Dau
, “
Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides
,”
Nat. Commun.
8
(
1
),
2022
(
2017
).
12.
O.
Zandi
and
T. W.
Hamann
, “
Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy
,”
Nat. Chem.
8
(
8
),
778
783
(
2016
).
13.
L.
Francàs
,
S.
Corby
,
S.
Selim
,
D.
Lee
,
C. A.
Mesa
,
R.
Godin
,
E.
Pastor
,
I. E. L.
Stephens
,
K.-S.
Choi
, and
J. R.
Durrant
, “
Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts
,”
Nat. Commun.
10
(
1
),
5208
(
2019
).
14.
V. R.
Stamenkovic
,
D.
Strmcnik
,
P. P.
Lopes
, and
N. M.
Markovic
, “
Energy and fuels from electrochemical interfaces
,”
Nat. Mater.
16
,
57
69
(
2017
).
15.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
, “
Combining theory and experiment in electrocatalysis: Insights into materials design
,”
Science
355
(
6321
),
eaad4998
(
2017
).
16.
B. M.
Hunter
,
W.
Hieringer
,
J. R.
Winkler
,
H. B.
Gray
, and
A. M.
Müller
, “
Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
,”
Energy Environ. Sci.
9
,
1734
1743
(
2016
).
17.
I. C.
Man
,
H. Y.
Su
,
F.
Calle-Vallejo
,
H. A.
Hansen
,
J. I.
Martínez
,
N. G.
Inoglu
,
J.
Kitchin
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
J.
Rossmeisl
, “
Universality in oxygen evolution electrocatalysis on oxide surfaces
,”
ChemCatChem
3
(
7
),
1159
1165
(
2011
).
18.
B. M.
Hunter
,
H. B.
Gray
, and
A. M.
Müller
, “
Earth-abundant heterogeneous water oxidation catalysts
,”
Chem. Rev.
116
,
14120
14136
(
2016
).
19.
H. J.
King
,
S. A.
Bonke
,
S. L. Y.
Chang
,
L.
Spiccia
,
B.
Johannessen
, and
R. K.
Hocking
, “
Engineering disorder into heterogenite-like cobalt oxides by phosphate doping: Implications for the design of water-oxidation catalysts
,”
ChemCatChem
9
,
511
521
(
2017
).
20.
M.
Görlin
,
J. F.
de Araujo
,
H.
Schmies
,
D.
Bernsmeier
,
S.
Dresp
,
M.
Gliech
,
Z.
Jusys
,
P.
Chernev
,
R.
Kraehnert
,
H.
Dau
, and
P.
Strasser
, “
Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH
,”
J. Am. Chem. Soc.
139
(
5
),
2070
2082
(
2017
).
21.
M. W.
Kanan
and
D. G.
Nocera
, “
In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+
,”
Science
321
(
5892
),
1072
1075
(
2008
).
22.
M. S.
Burke
,
M. G.
Kast
,
L.
Trotochaud
,
A. M.
Smith
, and
S. W.
Boettcher
, “
Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism
,”
J. Am. Chem. Soc.
137
(
10
),
3638
3648
(
2015
).
23.
R. D. L.
Smith
,
M. S.
Prévot
,
R. D.
Fagan
,
S.
Trudel
, and
C. P.
Berlinguette
, “
Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel
,”
J. Am. Chem. Soc.
135
(
31
),
11580
11586
(
2013
).
24.
I.
Roger
,
M. A.
Shipman
, and
M. D.
Symes
, “
Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
,”
Nat. Rev. Chem.
1
,
0003
(
2017
).
25.
I.
Zaharieva
,
D.
González-Flores
,
B.
Asfari
,
C.
Pasquini
,
M. R.
Mohammadi
,
K.
Klingan
,
I.
Zizak
,
S.
Loos
,
P.
Chernev
, and
H.
Dau
, “
Water oxidation catalysis – role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides
,”
Energy Environ. Sci.
9
,
2433
2443
(
2016
).
26.
D.
González-Flores
,
K.
Klingan
,
P.
Chernev
,
S.
Loos
,
M. R.
Mohammadi
,
C.
Pasquini
,
P.
Kubella
,
I.
Zaharieva
,
R. D. L.
Smith
, and
H.
Dau
, “
Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution
,”
Sustainable Energy Fuels
2
(
9
),
1986
1994
(
2018
).
27.
C.
Pasquini
,
I.
Zaharieva
,
D.
González-Flores
,
P.
Chernev
,
M. R.
Mohammadi
,
L.
Guidoni
,
R. D. L.
Smith
, and
H.
Dau
, “
Isotope effects reveal factors controlling catalytic activity in CO-based oxides for water oxidation
,”
J. Am. Chem. Soc.
141
(
7
),
2938
2948
(
2019
).
28.
M. V.
Abrashev
,
P.
Chernev
,
P.
Kubella
,
M. R.
Mohammadi
,
C.
Pasquini
,
H.
Dau
, and
I.
Zaharieva
, “
Origin of the heat-induced improvement of catalytic activity and stability of MnOx electrocatalysts for water oxidation
,”
J. Mater. Chem. A
7
(
28
),
17022
17036
(
2019
).
29.
J.
Jiang
,
Y.
Li
,
J.
Liu
,
X.
Huang
,
C.
Yuan
, and
X. W. D.
Lou
, “
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage
,”
Adv. Mater.
24
(
38
),
5166
5180
(
2012
).
30.
W.
Liu
,
P.
Oh
,
X.
Liu
,
M.-J.
Lee
,
W.
Cho
,
S.
Chae
,
Y.
Kim
, and
J.
Cho
, “
Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
,”
Angew. Chem., Int. Ed.
54
(
15
),
4440
4457
(
2015
).
31.
B.
Banov
,
J.
Bourilkov
, and
M.
Mladenov
, “
Cobalt stabilized layered lithium-nickel oxides, cathodes in lithium rechargeable cells
,”
J. Power Sources
54
(
2
),
268
270
(
1995
).
32.
M. M.
Thackeray
, “
Manganese oxides for lithium batteries
,”
Prog. Solid State Chem.
25
(
1
),
1
71
(
1997
).
33.
A. K.
Padhi
, “
Phospho-olivines as positive-electrode materials for rechargeable lithium batteries
,”
J. Electrochem. Soc.
144
(
4
),
1188
(
1997
).
34.
M.
Risch
,
V.
Khare
,
I.
Zaharieva
,
L.
Gerencser
,
P.
Chernev
, and
H.
Dau
, “
Cobalt-oxo core of a water-oxidizing catalyst film
,”
J. Am. Chem. Soc.
131
(
20
),
6936
6937
(
2009
).
35.
M.
Risch
,
K.
Klingan
,
J.
Heidkamp
,
D.
Ehrenberg
,
P.
Chernev
,
I.
Zaharieva
, and
H.
Dau
, “
Nickel-oxido structure of a water-oxidizing catalyst film
,”
Chem. Commun.
47
(
43
),
11912
11914
(
2011
).
36.
J.
Park
,
H.
Kim
,
K.
Jin
,
B. J.
Lee
,
Y.-S.
Park
,
H.
Kim
,
I.
Park
,
K. D.
Yang
,
H.-Y.
Jeong
,
J.
Kim
,
K. T.
Hong
,
H. W.
Jang
,
K.
Kang
, and
K. T.
Nam
, “
A new water oxidation catalyst: Lithium manganese pyrophosphate with tunable Mn valency
,”
J. Am. Chem. Soc.
136
(
11
),
4201
4211
(
2014
).
37.
D. K.
Bediako
,
B.
Lassalle-Kaiser
,
Y.
Surendranath
,
J.
Yano
,
V. K.
Yachandra
, and
D. G.
Nocera
, “
Structure-activity correlations in a nickel-borate oxygen evolution catalyst
,”
J. Am. Chem. Soc.
134
(
15
),
6801
6809
(
2012
).
38.
I.
Zaharieva
,
P.
Chernev
,
M.
Risch
,
K.
Klingan
,
M.
Kohlhoff
,
A.
Fischer
, and
H.
Dau
, “
Electrosynthesis, functional and structural characterization of a water-oxidizing manganese oxide
,”
Energy Environ. Sci.
5
,
7081
7089
(
2012
).
39.
F.
Lin
,
Y.
Liu
,
X.
Yu
,
L.
Cheng
,
A.
Singer
,
O. G.
Shpyrko
,
H. L.
Xin
,
N.
Tamura
,
C.
Tian
,
T.-C.
Weng
,
X.-Q.
Yang
,
Y. S.
Meng
,
D.
Nordlund
,
W.
Yang
, and
M. M.
Doeff
, “
Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries
,”
Chem. Rev.
117
(
21
),
13123
13186
(
2017
).
40.
A.
Ito
,
Y.
Sato
,
T.
Sanada
,
M.
Hatano
,
H.
Horie
, and
Y.
Ohsawa
, “
In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2
,”
J. Power Sources
196
(
16
),
6828
6834
(
2011
).
41.
M. A.
Lowe
,
J.
Gao
, and
H. D.
Abruña
, “
In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes
,”
J. Mater. Chem. A
1
(
6
),
2094
2103
(
2013
).
42.
H.-Y.
Wang
,
S.-F.
Hung
,
Y.-Y.
Hsu
,
L.
Zhang
,
J.
Miao
,
T.-S.
Chan
,
Q.
Xiong
, and
B.
Liu
, “
In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst
,”
J. Phys. Chem. Lett.
7
(
23
),
4847
4853
(
2016
).
43.
I. Y.
Ahmet
,
Y.
Ma
,
J.-W.
Jang
,
T.
Henschel
,
B.
Stannowski
,
T.
Lopes
,
A.
Vilanova
,
A.
Mendes
,
F. F.
Abdi
, and
R.
van de Krol
, “
Demonstration of a 50 cm2 BiVO4 tandem photoelectrochemical-photovoltaic water splitting device
,”
Sustainable Energy Fuels
3
(
9
),
2366
2379
(
2019
).
44.
U.
Bergmann
and
P.
Glatzel
, “
X-ray emission spectroscopy
,”
Photosynth. Res.
102
(
2-3
),
255
266
(
2009
).
45.
M.
Inaba
,
Y.
Iriyama
,
Z.
Ogumi
,
Y.
Todzuka
, and
A.
Tasaka
, “
Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation
,”
J. Raman Spectrosc.
28
(
8
),
613
617
(
1997
).
46.
T.
Burdyny
,
P. J.
Graham
,
Y.
Pang
,
C.-T.
Dinh
,
M.
Liu
,
E. H.
Sargent
, and
D.
Sinton
, “
Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry
,”
ACS Sustainable Chem. Eng.
5
(
5
),
4031
4040
(
2017
).
47.
J. B.
Gerken
,
J. G.
McAlpin
,
J. Y. C.
Chen
,
M. L.
Rigsby
,
W. H.
Casey
,
R. D.
Britt
, and
S. S.
Stahl
, “
Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity
,”
J. Am. Chem. Soc.
133
(
36
),
14431
14442
(
2011
).
48.
A.
Bergmann
,
T. E.
Jones
,
E.
Martinez Moreno
,
D.
Teschner
,
P.
Chernev
,
M.
Gliech
,
T.
Reier
,
H.
Dau
, and
P.
Strasser
, “
Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction
,”
Nat. Catal.
1
(
9
),
711
719
(
2018
).
49.
M.
Zhang
,
M.
de Respinis
, and
H.
Frei
, “
Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst
,”
Nat. Chem.
6
(
4
),
362
367
(
2014
).
50.
M.
Bajdich
,
M.
García-Mota
,
A.
Vojvodic
,
J. K.
Nørskov
, and
A. T.
Bell
, “
Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water
,”
J. Am. Chem. Soc.
135
(
36
),
13521
13530
(
2013
).
51.
K.
Klingan
,
F.
Ringleb
,
I.
Zaharieva
,
J.
Heidkamp
,
P.
Chernev
,
D.
Gonzalez-Flores
,
M.
Risch
,
A.
Fischer
, and
H.
Dau
, “
Water oxidation by amorphous cobalt-based oxides: Volume activity and proton transfer to electrolyte bases
,”
ChemSusChem
7
(
5
),
1301
1310
(
2014
).
52.
D. K.
Bediako
,
C.
Costentin
,
E. C.
Jones
,
D. G.
Nocera
, and
J.-M.
Savéant
, “
Proton–electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst
,”
J. Am. Chem. Soc.
135
(
28
),
10492
10502
(
2013
).
53.
C.
Costentin
,
T. R.
Porter
, and
J.-M.
Savéant
, “
Conduction and reactivity in heterogeneous-molecular catalysis: New insights in water oxidation catalysis by phosphate cobalt oxide films
,”
J. Am. Chem. Soc.
138
(
17
),
5615
5622
(
2016
).
54.
P.
Du
,
O.
Kokhan
,
K. W.
Chapman
,
P. J.
Chupas
, and
D. M.
Tiede
, “
Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis
,”
J. Am. Chem. Soc.
134
(
27
),
11096
11099
(
2012
).
55.
G.
Kwon
,
H.
Jang
,
J.-S.
Lee
,
A.
Mane
,
D. J.
Mandia
,
S. R.
Soltau
,
L. M.
Utschig
,
A. B. F.
Martinson
,
D. M.
Tiede
,
H.
Kim
, and
J.
Kim
, “
Resolution of electronic and structural factors underlying oxygen-evolving performance in amorphous cobalt oxide catalysts
,”
J. Am. Chem. Soc.
140
(
34
),
10710
10720
(
2018
).
56.
B. S.
Yeo
,
S. L.
Klaus
,
P. N.
Ross
,
R. A.
Mathies
, and
A. T.
Bell
, “
Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold
,”
ChemPhysChem
11
(
9
),
1854
1857
(
2010
).
57.
B.
Rivas-Murias
and
V.
Salgueiriño
, “
Thermodynamic CoO-Co3 O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals
,”
J. Raman Spectrosc.
48
(
6
),
837
841
(
2017
).
58.
G. E.
Walrafen
, “
Raman spectral studies of water structure
,”
J. Chem. Phys.
40
(
11
),
3249
3256
(
1964
).
59.
L. P.
Heighton
,
M.
Zimmerman
,
C. P.
Rice
,
E. E.
Codling
,
J. A.
Tossell
, and
W. F.
Schmidt
, “
Quantification of inositol hexa-kis phosphate in environmental samples
,”
Open J. Soil Sci.
2
,
55
63
(
2012
).
60.
K.
Yang
,
R.
Kas
, and
W. A.
Smith
, “
In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction
,”
J. Am. Chem. Soc.
141
(
40
),
15891
15900
(
2019
).
61.
M.
Dunwell
,
X.
Yang
,
B. P.
Setzler
,
J.
Anibal
,
Y.
Yan
, and
B.
Xu
, “
Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy
,”
ACS Catal.
8
(
5
),
3999
4008
(
2018
).
62.
J.
Villalobos
,
D.
González-Flores
,
K.
Klingan
,
P.
Chernev
,
P.
Kubella
,
R.
Urcuyo
,
C.
Pasquini
,
M. R.
Mohammadi
,
R. D. L.
Smith
,
M. L.
Montero
, and
H.
Dau
, “
Structural and functional role of anions in electrochemical water oxidation probed by arsenate incorporation into cobalt-oxide materials
,”
Phys. Chem. Chem. Phys.
21
(
23
),
12485
12493
(
2019
).
63.
C. M.
Preston
and
W. A.
Adams
, “
A laser Raman spectroscopic study of aqueous orthophosphate salts
,”
J. Phys. Chem.
83
(
7
),
814
821
(
1979
).
64.
F.
Rashchi
and
J. A.
Finch
, “
Polyphosphates: A review their chemistry and application with particular reference to mineral processing
,”
Miner. Eng.
13
(
10
),
1019
1035
(
2000
).
65.
C. J.
Eom
and
J.
Suntivich
, “
In situ stimulated Raman spectroscopy reveals the phosphate network in the amorphous cobalt oxide catalyst and its role in the catalyst formation
,”
J. Phys. Chem. C
123
(
48
),
29284
29290
(
2019
).
66.
Y.
Abe
, “
Protonic conduction in phosphate glasses
,”
J. Electrochem. Soc.
141
(
6
),
L64
(
1994
).
67.
Y.
Li
,
W.
Qiu
,
F.
Qin
,
H.
Fang
,
V. G.
Hadjiev
,
D.
Litvinov
, and
J.
Bao
, “
Identification of cobalt oxides with Raman scattering and fourier transform infrared spectroscopy
,”
J. Phys. Chem. C
120
(
8
),
4511
4516
(
2016
).
68.
A. M.
Ullman
,
C. N.
Brodsky
,
N.
Li
,
S.-L.
Zheng
, and
D. G.
Nocera
, “
Probing edge site reactivity of oxidic cobalt water oxidation catalysts
,”
J. Am. Chem. Soc.
138
,
4229
4236
(
2016
).
69.
B. S.
Yeo
and
A. T.
Bell
, “
Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen
,”
J. Am. Chem. Soc.
133
(
14
),
5587
5593
(
2011
).
70.
A.
Rougier
,
G. A.
Nazri
, and
C.
Julien
, “
Vibrational spectroscopy and electrochemical properties of LiNi0.7Co0.3O2 cathode material for rechargeable lithium batteries
,”
Ionics
3
(
3
),
170
176
(
1997
).
71.
J. A.
Koza
,
C. M.
Hull
,
Y.-C.
Liu
, and
J. A.
Switzer
, “
Deposition of –Co(OH)2 films by electrochemical reduction of tris(ethylenediamine)cobalt(III) in alkaline solution
,”
Chem. Mater.
25
(
9
),
1922
1926
(
2013
).
72.
Z.
Pavlovic
,
C.
Ranjan
,
Q.
Gao
,
M.
van Gastel
, and
R.
Schlögl
, “
Probing the structure of a water-oxidizing anodic iridium oxide catalyst using Raman spectroscopy
,”
ACS Catal.
6
(
12
),
8098
8105
(
2016
).
73.
O.
Diaz-Morales
,
D.
Ferrus-Suspedra
, and
M. T. M.
Koper
, “
The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation
,”
Chem. Sci.
7
(
4
),
2639
2645
(
2016
).
74.
R. D. L.
Smith
and
C. P.
Berlinguette
, “
Accounting for the dynamic oxidative behavior of nickel anodes
,”
J. Am. Chem. Soc.
138
(
5
),
1561
1567
(
2016
).
75.
G.
Mattioli
,
P.
Giannozzi
,
A.
Amore Bonapasta
, and
L.
Guidoni
, “
Reaction pathways for oxygen evolution promoted by cobalt catalyst
,”
J. Am. Chem. Soc.
135
(
41
),
15353
15363
(
2013
).
76.
C.
Costentin
and
D. G.
Nocera
, “
Self-healing catalysis in water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
(
51
),
13380
13384
(
2017
).
77.
G.
Mattioli
,
M.
Risch
,
M. A.
Bonapasta
,
H.
Dau
, and
L.
Guidoni
, “
Protonation states in a cobalt-oxide catalyst for water oxidation: Fine comparison of ab initio molecular dynamics and X-ray absorption spectroscopy results
,”
Phys. Chem. Chem. Phys.
13
,
15437
15441
(
2011
).
78.
D. R.
Weinberg
,
C. J.
Gagliardi
,
J. F.
Hull
,
C. F.
Murphy
,
C. A.
Kent
,
B. C.
Westlake
,
A.
Paul
,
D. H.
Ess
,
D. G.
McCafferty
, and
T. J.
Meyer
, “
Proton-coupled electron transfer
,”
Chem. Rev.
112
(
7
),
4016
4093
(
2012
).
79.
H.
Dau
,
C.
Limberg
,
T.
Reier
,
M.
Risch
,
S.
Roggan
, and
P.
Strasser
, “
The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis
,”
ChemCatChem
2
(
7
),
724
761
(
2010
).
80.
T.
Ohzuku
, “
Solid-state redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells
,”
J. Electrochem. Soc.
141
(
11
),
2972
(
1994
).
81.
Z.
Pavlovic
,
C.
Ranjan
,
M.
van Gastel
, and
R.
Schlögl
, “
The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy
,”
Chem. Commun.
53
(
92
),
12414
12417
(
2017
).
82.
M. W.
Kanan
,
J.
Yano
,
Y.
Surendranath
,
M.
Dincă
,
V. K.
Yachandra
, and
D. G.
Nocera
, “
Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy
,”
J. Am. Chem. Soc.
132
(
39
),
13692
13701
(
2010
).
83.
A.
Grimaud
,
O.
Diaz-Morales
,
B.
Han
,
W. T.
Hong
,
Y.-L.
Lee
,
L.
Giordano
,
K. A.
Stoerzinger
,
M. T. M.
Koper
, and
Y.
Shao-Horn
, “
Activating lattice oxygen redox reactions in metal oxides to catalyze oxygen evolution
,”
Nat. Chem.
9
(
5
),
457
465
(
2017
).
84.
Y.
Matsuda
,
N.
Kuwata
,
T.
Okawa
,
A.
Dorai
,
O.
Kamishima
, and
J.
Kawamura
, “
In situ Raman spectroscopy of Li CoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery
,”
Solid State Ionics
335
,
7
14
(
2019
).
85.
L.
Trotochaud
,
T. J.
Mills
, and
S. W.
Boettcher
, “
An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts
,”
J. Phys. Chem. Lett.
4
(
6
),
931
935
(
2013
).
86.
C. N.
Polo da Fonseca
,
M.-A.
De Paoli
, and
A.
Gorenstein
, “
Electrochromism in cobalt oxide thin films grown by anodic electroprecipitation
,”
Sol. Energy Mater. Sol. Cells
33
(
1
),
73
81
(
1994
).
87.
S.
Jiang
,
K.
Klingan
,
C.
Pasquini
, and
H.
Dau
, “
New aspects of operando Raman spectroscopy applied to electrochemical CO2 reduction on Cu foams
,”
J. Chem. Phys.
150
(
4
),
041718
(
2019
).
88.
S.
Mahajan
,
R. M.
Cole
,
J. D.
Speed
,
S. H.
Pelfrey
,
A. E.
Russell
,
P. N.
Bartlett
,
S. M.
Barnett
, and
J. J.
Baumberg
, “
Understanding the surface-enhanced Raman spectroscopy “background”
,”
J. Phys. Chem. C
114
(
16
),
7242
7250
(
2010
).
89.
J. G.
McAlpin
,
Y.
Surendranath
,
M.
Dincă
,
T. A.
Stich
,
S. A.
Stoian
,
W. H.
Casey
,
D. G.
Nocera
, and
R. D.
Britt
, “
EPR evidence for Co(IV) species produced during water oxidation at neutral pH
,”
J. Am. Chem. Soc.
132
(
20
),
6882
6883
(
2010
).
90.
S.
Koroidov
,
M. F.
Anderlund
,
S.
Styring
,
A.
Thapper
, and
J.
Messinger
, “
First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles
,”
Energy Environ. Sci.
8
,
2492
2503
(
2015
).

Supplementary Material

You do not currently have access to this content.