A new method for calculating nuclear magnetic shielding in solutions is developed based on the reference interaction site model self-consistent field (RISM-SCF) with spatial electron density distribution (SEDD). In RISM-SCF-SEDD, the electrostatic interaction between the solute and the solvent is described by considering the spread of electron to obtain more realistic electronic structure in solutions. It is thus expected to allow us to predict more quantitative chemical shifts of a wide variety of chemical species in solutions. In this study, the method is applied to a water molecule in water and is validated by examining the dependence of the solvent temperature and density on chemical shifts. The dependence of solvent species is also investigated, and more accurate results are obtained for polar solvents compared to the previous RISM-SCF study. Another application example of this method is the 15N chemical shifts of two azines in water, which is difficult to predict with the polarizable continuum model (PCM). Our results are in good agreement with the previous quantum mechanical/molecular mechanics study and experimental results. It is also shown that our method gives more realistic results for methanol and acetone than the PCM.

1.
J. M.
Seco
,
E.
Quiñoá
, and
R.
Riguera
,
Chem. Rev.
104
,
17
(
2004
).
2.
E. E.
Kwan
and
S. G.
Huang
,
Eur. J. Org. Chem.
2008
,
2671
.
3.
J. M.
Seco
,
E.
Quiñoá
, and
R.
Riguera
,
Chem. Rev.
112
,
4603
(
2012
).
4.
Z.
Xu
,
C.
Liu
,
S.
Zhao
,
S.
Chen
, and
Y.
Zhao
,
Chem. Rev.
119
,
195
(
2018
).
5.
N.
Bross-Walch
,
T.
Kühn
,
D.
Moskau
, and
O.
Zerbe
,
Chem. Biodiversity
2
,
147
(
2005
).
6.
A.
Cavalli
,
X.
Salvatella
,
C. M.
Dobson
, and
M.
Vendruscolo
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
9615
(
2007
).
7.
I. R.
Kleckner
and
M. P.
Foster
,
Biochim. Biophys. Acta, Proteins Proteomics
1814
,
942
(
2011
).
8.
M.
Kovermann
,
P.
Rogne
, and
M.
Wolf-Watz
,
Q. Rev. Biophys.
49
,
e6
(
2016
).
9.
A.
Pastor
and
E.
Martínez-Viviente
,
Coord. Chem. Rev.
252
,
2314
(
2008
).
10.
Y.
Cohen
and
S.
Slovak
,
Org. Chem. Front.
6
,
1705
(
2019
).
11.
M. W.
Lodewyk
,
M. R.
Siebert
, and
D. J.
Tantillo
,
Chem. Rev.
112
,
1839
(
2012
).
12.
F. V.
Toukach
and
V. P.
Ananikov
,
Chem. Soc. Rev.
42
,
8376
(
2013
).
13.
M.
Bühl
and
T.
van Mourik
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
634
(
2011
).
14.
D.
Xin
 et al,
J. Org. Chem.
82
,
5135
(
2017
).
15.
T.
Helgaker
 et al,
Chem. Rev.
112
,
543
(
2012
).
16.
E. E.
Kwan
and
R. Y.
Liu
,
J. Chem. Theory Comput.
11
,
5083
(
2015
).
17.
G.
Saielli
,
Adv. Theory Simul.
1
,
1800084
(
2018
).
18.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
19.
B.
Mennucci
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
386
(
2012
).
20.
A.
Bagno
,
F.
Rastrelli
, and
G.
Saielli
,
Chem. - Eur. J.
12
,
5514
(
2006
).
21.
R.
Jain
,
T.
Bally
, and
P. R.
Rablen
,
J. Org. Lett.
74
,
4017
(
2009
).
22.
B.
Mennucci
,
J. M.
Martínez
, and
J.
Tomasi
,
J. Phys. Chem. A
105
,
7287
(
2001
).
23.
B.
Mennucci
,
J. Am. Chem. Soc.
124
,
1506
(
2002
).
24.
J.
Tomasi
,
R.
Cammi
,
B.
Mennucci
,
C.
Cappelli
, and
S.
Corni
,
Phys. Chem. Chem. Phys.
4
,
5697
(
2002
).
25.
R. A.
Klein
,
B.
Mennucci
, and
J.
Tomasi
,
J. Phys. Chem. A
108
,
5851
(
2004
).
26.
K.
Aidas
 et al,
J. Phys. Chem. A
111
,
4199
(
2007
).
27.
R. M.
Gester
,
H. C.
Georg
,
S.
Canuto
,
M. C.
Caputo
, and
P. F.
Provasi
,
J. Phys. Chem. A
113
,
14936
(
2009
).
28.
M.
Dračínský
and
P.
Bouř
,
J. Chem. Theory Comput.
6
,
288
(
2010
).
29.
V. A.
Semenov
,
D. O.
Samultsev
, and
L. B.
Krivdin
,
Magn. Reson. Chem.
52
,
686
(
2014
).
30.
M. C.
Caputo
,
P. F.
Provasi
, and
S. P.
Sauer
,
Theor. Chem. Acc.
137
,
88
(
2018
).
31.
Y. Y.
Rusakov
 et al,
J. Phys. Chem. A
122
,
6746
(
2018
).
32.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
33.
Q.
Cui
and
M.
Karplus
,
J. Phys. Chem. B
104
,
3721
(
2000
).
34.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
J. Phys. Chem. A
107
,
2578
(
2003
).
35.
D.
Sebastiani
and
U.
Rothlisberger
,
J. Phys. Chem. B
108
,
2807
(
2004
).
36.
B.
Wang
and
K. M.
Merz
,
J. Chem. Theory Comput.
2
,
209
(
2006
).
37.
A. H.
Steindal
,
K.
Ruud
,
L.
Frediani
,
K.
Aidas
, and
J.
Kongsted
,
J. Phys. Chem. B
115
,
3027
(
2011
).
38.
V.
Manzoni
,
M. L.
Lyra
,
R. M.
Gester
,
K.
Coutinho
, and
S.
Canuto
,
Phys. Chem. Chem. Phys.
12
,
14023
(
2010
).
39.
C.
Steinmann
,
J. M. H.
Olsen
, and
J.
Kongsted
,
J. Chem. Theory Comput.
10
,
981
(
2014
).
40.
U. N.
Morzan
 et al,
Chem. Rev.
118
,
4071
(
2018
).
41.
S.
Komin
,
C.
Gossens
,
I.
Tavernelli
,
U.
Rothlisberger
, and
D.
Sebastiani
,
J. Phys. Chem. B
111
,
5225
(
2007
).
42.
J.
Kongsted
,
C. B.
Nielsen
,
K. V.
Mikkelsen
,
O.
Christiansen
, and
K.
Ruud
,
J. Chem. Phys.
126
,
034510
(
2007
).
43.
J.
Kongsted
and
B.
Mennucci
,
J. Phys. Chem. A
111
,
9890
(
2007
).
44.
V.
Manzoni
,
M. L.
Lyra
,
K.
Coutinho
, and
S.
Canuto
,
J. Chem. Phys.
135
,
144103
(
2011
).
45.
D.
Flaig
,
M.
Beer
, and
C.
Ochsenfeld
,
J. Chem. Theory Comput.
8
,
2260
(
2012
).
46.
S.
Ten-no
,
F.
Hirata
, and
S.
Kato
,
J. Chem. Phys.
100
,
7443
(
1994
).
47.
H.
Sato
,
F.
Hirata
, and
S.
Kato
,
J. Chem. Phys.
105
,
1546
(
1996
).
48.
H.
Sato
,
Phys. Chem. Chem. Phys.
15
,
7450
(
2013
).
49.
E. L.
Ratkova
,
D. S.
Palmer
, and
M. V.
Fedorov
,
Chem. Rev.
115
,
6312
(
2015
).
50.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
51.
F.
Hirata
and
P. J.
Rossky
,
Chem. Phys. Lett.
83
,
329
(
1981
).
52.
F.
Hirata
,
Molecular Theory of Solvation
(
Springer Science & Business Media
,
2003
), Vol. 24.
53.
N.
Minezawa
and
S.
Kato
,
J. Phys. Chem. A
109
,
5445
(
2005
).
54.
M.
Higashi
and
S.
Kato
,
J. Phys. Chem. A
109
,
9867
(
2005
).
55.
T.
Mori
and
S.
Kato
,
Chem. Phys. Lett.
437
,
159
(
2007
).
56.
Y.
Tanaka
,
N.
Yoshida
, and
H.
Nakano
,
Chem. Phys. Lett.
583
,
69
(
2013
).
57.
T.
Yamazaki
,
H.
Sato
, and
F.
Hirata
,
Chem. Phys. Lett.
325
,
668
(
2000
).
58.
T.
Yamazaki
,
H.
Sato
, and
F.
Hirata
,
J. Chem. Phys.
115
,
8949
(
2001
).
59.
A.
Morita
and
S.
Kato
,
J. Phys. Chem. A
106
,
3909
(
2002
).
60.
D.
Yokogawa
,
H.
Sato
, and
S.
Sakaki
,
J. Chem. Phys.
126
,
244504
(
2007
).
61.
D.
Yokogawa
,
H.
Sato
, and
S.
Sakaki
,
J. Chem. Phys.
131
,
214504
(
2009
).
62.
D.
Yokogawa
,
K.
Ono
,
H.
Sato
, and
S.
Sakaki
,
Dalton Trans.
40
,
11125
(
2011
).
63.
K.
Iida
and
H.
Sato
,
J. Phys. Chem. B
116
,
2244
(
2012
).
64.
S.
Hayaki
,
Y.
Kimura
, and
H.
Sato
,
J. Phys. Chem. B
117
,
6759
(
2013
).
65.
Y.
Matsumura
,
K.
Iida
, and
H.
Sato
,
Chem. Phys. Lett.
584
,
103
(
2013
).
66.
H.
Nakano
,
J.
Noguchi
,
T.
Mochida
, and
H.
Sato
,
J. Phys. Chem. A
119
,
5181
(
2015
).
67.
K.
Kasahara
,
H.
Nakano
, and
H.
Sato
,
J. Phys. Chem. B
121
,
5293
(
2017
).
68.
K.
Hirano
,
H.
Nakano
,
Y.
Nakao
,
H.
Sato
, and
S.
Sakaki
,
J. Comput. Chem.
38
,
1567
(
2017
).
69.
70.
T.
Helgaker
and
P.
Jørgensen
,
J. Chem. Phys.
95
,
2595
(
1991
).
71.
S. J.
Singer
and
D.
Chandler
,
Mol. Phys.
55
,
621
(
1985
).
72.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
8
,
3072
(
2006
).
73.
M. J.
Frisch
 et al, Gaussian 16 Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
74.
M.
Nakahara
and
C.
Wakai
,
Chem. Lett.
21
,
809
(
1992
).
75.
H. J.
Berendsen
,
J. P.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
(
Springer
,
1981
), pp.
331
342
.
76.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
77.
H.
Sato
and
F.
Hirata
,
J. Chem. Phys.
111
,
8545
(
1999
).
78.
F.
Hirata
and
R. M.
Levy
,
Chem. Phys. Lett.
136
,
267
(
1987
).
79.
B. M.
Pettitt
and
P. J.
Rossky
,
J. Chem. Phys.
77
,
1451
(
1982
).
80.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
81.
R. E.
Hoffman
,
Magn. Reson. Chem.
44
,
606
(
2006
).
82.
W. L.
Jorgensen
and
N. A.
McDonald
,
J. Mol. Struct.: THEOCHEM
424
,
145
(
1998
).
83.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
,
J. Mol. Struct.: THEOCHEM
464
,
211
(
1999
).
84.
A.
Rohatgi
, WebPlotDigitizer, https://automeris.io/WebPlotDigitizer/,
2017
.
85.
N.
Yoshida
and
S.
Kato
,
J. Chem. Phys.
113
,
4974
(
2000
).
86.
T.
Yamazaki
,
H.
Sato
, and
F.
Hirata
,
J. Chem. Phys.
119
,
6663
(
2003
).
87.
D.
Yokogawa
,
Chem. Phys. Lett.
587
,
113
(
2013
).
88.
D.
Yokogawa
,
Bull. Chem. Soc. Jpn.
91
,
1540
(
2018
).
You do not currently have access to this content.