A self-consistent approximation beyond the Redfield limit and without using the Anderson–Weiss approximation for the Free Induction Decay (FID) of deuteron spins belonging to polymer chains undergoing reptation is formulated. The dynamical heterogeneity of the polymer segments created by the end segments is taken into account. Within an accuracy of slow-changing logarithmic factors, FID can be qualitatively described by a transition from an initial pseudo-Gaussian to a stretched-exponential decay at long times. With an increase in observation time, the contribution from end effects to the FID increases. In the regime of incoherent reptation, contributions to the FID from central segments yield an exponent of 1/4 for the stretched decay and contributions from end segments yield an exponent of 3/16. In the regime of coherent reptation, the central segments generate a stretching exponent of 1/2, whereas the end segments contribute with an exponent of 1/4. These predictions are shown to be in qualitative agreement with the experimental FIDs of perdeuterated poly(ethylene oxide) with molecular masses of 132 kg/mol and 862 kg/mol.

1.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
(
AIP Press
,
1994
).
2.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
(
Oxford University Press
,
2003
), Vol. 23.
3.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford Clarendon Press
,
1989
).
4.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaka
,
1979
).
5.
G. R.
Strobl
,
The Physics of Polymers
(
Springer
,
1997
).
6.
R.
Kimmich
and
R.
Bachus
,
Colloid Polym. Sci.
260
,
911
(
1982
).
7.
T. W. M.
Huirua
,
R.
Wang
, and
P. T.
Callaghan
,
Macromolecules
23
,
1658
(
1990
).
8.
M.
Doi
,
J. Polym. Sci.: Polym. Lett. Ed.
19
,
265
273
(
1981
).
9.
R.
Kimmich
and
M.
Köpf
,
Relaxation in Polymers
, Progress in Colloid and Polymer Science (
Steinkopff
,
1989
), Vol. 80, p.
8
.
10.
R.
Folland
and
A.
Charlesby
,
J. Polym. Sci.: Polym. Lett. Ed.
16
,
339
(
1978
).
11.
W. L. F.
Gölz
and
H. G.
Zachmann
,
Die Makromolekulare Chemie
176
,
2721
(
1975
).
12.
G. C.
Berry
and
T. G.
Fox
,
Adv. Polym. Sci.
6
,
261
(
1968
).10.1002/pol.1968.110060320
13.
M.-L.
Trutschel
,
A.
Mordvinkin
,
F.
Furtado
,
L.
Willner
, and
K.
Saalwächter
,
Macromolecules
51
,
4108
(
2018
).
14.
M.
Bixon
and
R.
Zwanzig
,
J. Chem. Phys.
68
,
1896
(
1978
).
15.
Y. Y.
Gotlib
and
Y. Y.
Svetlov
,
Polym. Sci. USSR
21
,
1682
(
1979
).
16.
M. G.
Bawendi
and
K. F.
Freed
,
J. Chem. Phys.
83
,
2491
(
1985
).
17.
J. B.
Lagowski
,
J.
Noolandi
, and
B.
Nickel
,
J. Chem. Phys.
95
,
1266
(
1991
).
18.
R. G.
Winkler
,
P.
Reineker
, and
L.
Harnau
,
J. Chem. Phys.
101
,
8119
(
1994
).
19.
B.-Y.
Ha
and
D.
Thirumalai
,
J. Chem. Phys.
103
,
9408
(
1995
).
20.
D. A.
Markelov
,
M.
Dolgushev
, and
E.
Lähderanta
,
Annu. Rep. NMR Spectrosc.
91
,
1
(
2017
).
21.
M.
Dolgushev
,
D. A.
Markelov
,
F.
Fürstenberg
, and
T.
Guérin
,
Phys. Rev. E
94
,
012502
(
2016
).
22.
D. A.
Markelov
,
F.
Fürstenberg
, and
M.
Dolgushev
,
Polymer
144
,
65
(
2018
).
23.
I. K.
Ostrovskaya
and
N. F.
Fatkullin
,
Polym. Sci., Ser. A
62
,
138
(
2020
).
24.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford Clarendon Press
,
1961
).
25.
C. P.
Slichter
,
Principles of Magnetic Resonance
, 3rd ed. (
Springer-Verlag
,
Berlin, Heidelberg; New York, New York
,
1992
).
26.
D.
Wolf
,
Spin-Temperature and Nuclear-Spin Relaxation in Matter
(
Oxford Clarendon Press
,
1979
).
27.
M.
Mehring
,
Principles of High Resolution NMR in Solids
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg; New York
,
1983
).
28.
N.
Fatkullin
, arXiv:1105.3317 (
2011
).
29.
E. A.
Rössler
,
S.
Stapf
, and
N.
Fatkullin
,
Curr. Opin. Colloid Interface Sci.
18
,
173
(
2013
).
30.
N.
Fatkullin
,
S.
Stapf
,
M.
Hofmann
,
R.
Meier
, and
E. A.
Rössler
,
J. Non-Cryst. Solids
407
,
309
(
2015
).
31.
R.
Kimmich
and
N.
Fatkullin
,
Progr. NMR Spectrosc.
101
,
18
(
2017
).
32.
N. F.
Fatkullin
,
T.
Körber
, and
E. A.
Rössler
,
Polymer
142
,
310
(
2018
).
33.
R.
Kimmich
,
NMR Tomography, Diffusometry, Relaxometry
(
Springer
,
Berlin
,
1997
).
34.
N.
Fatkullin
,
A.
Gubaidullin
,
C.
Mattea
, and
S.
Stapf
,
J. Chem. Phys.
137
,
224907
(
2012
).
35.
A. E.
Likhtman
and
T. C. B.
McLeish
,
Macromolecules
35
,
6332
(
2002
).
36.
F.
Mohamed
,
M.
Flämig
,
M.
Hofmann
,
L.
Heymann
,
L.
Willner
,
N.
Fatkullin
,
N.
Aksel
, and
E. A.
Rössler
,
J. Chem. Phys.
149
,
044902
(
2018
).
37.
N.
Fatkullin
and
R.
Kimmich
,
Phys. Rev. E
52
,
3273
(
1995
).
38.
J. P. C.
Addad
,
Progr. NMR Spectrosc.
25
,
1
(
1993
).
39.
M. G.
Brereton
,
Macromolecules
22
,
3667
(
1989
).
40.
M. G.
Brereton
,
Macromolecules
23
,
1119
(
1990
).
41.
E. M.
Pestryaev
,
Polym. Sci., Ser. A
61
,
392
(
2019
).
42.
A.
Lozovoi
,
C.
Mattea
,
N.
Fatkullin
, and
S.
Stapf
,
Macromolecules
51
,
10055
(
2018
).
43.
T. N.
Khazanovich
,
Polym. Sci. USSR
4
,
727
(
1963
).
44.
R.
Ullman
,
J. Chem. Phys.
43
,
3161
(
1965
).
45.
A.
Gubaidullin
,
T.
Shakirov
,
N.
Fatkullin
, and
R.
Kimmich
,
Solid State NMR
35
,
147
(
2009
).
46.
M.
Hofmann
,
B.
Kresse
,
A. F.
Privalov
,
L.
Heymann
,
L.
Willner
,
N.
Aksel
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
49
,
7945
(
2016
).
47.
A.
Herrmann
,
B.
Kresse
,
M.
Wohlfahrt
,
I.
Bauer
,
A. F.
Privalov
,
D.
Kruk
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
,
Macromolecules
45
,
6516
(
2012
).
48.
A.
Lozovoi
,
C.
Mattea
,
A.
Herrmann
,
E. A.
Rössler
,
S.
Stapf
, and
N.
Fatkullin
,
J. Chem. Phys.
144
,
241101
(
2016
).
49.
A.
Lozovoi
,
C.
Mattea
,
M.
Hofmann
,
K.
Saalwaechter
,
N.
Fatkullin
, and
S.
Stapf
,
J. Chem. Phys.
146
,
224901
(
2017
).
50.
A.
Lozovoi
,
L.
Petrova
,
C.
Mattea
,
S.
Stapf
,
E. A.
Rössler
, and
N.
Fatkullin
,
J. Chem. Phys.
147
,
074904
(
2017
).
51.
F. V.
Chavez
and
K.
Saalwächter
,
Macromolecules
44
,
1549
(
2011
).
52.
F. V.
Chavez
and
K.
Saalwächter
,
Macromolecules
44
,
1560
(
2011
).

Supplementary Material

You do not currently have access to this content.