The surface evolution of LiNi0.8Co0.15Al0.05O2 (NCA) and Li4Ti5O12 (LTO) electrodes cycled in a carbonate-based electrolyte was systematically investigated using the high lateral resolution and surface sensitivity of x-ray photoemission electron microscopy combined with x-ray absorption spectroscopy and x-ray photoelectron spectroscopy. On the cathode, we attest that the surface of the pristine particles is composed of adventitious Li2CO3 together with reduced Ni and Co in a +2 oxidation state, which is directly responsible for the overpotential observed during the first de-lithiation. This layer decomposes at 3.8 V vs Li+/Li, leaving behind a fresh surface with Ni and Co in a +3 oxidation state. The charge compensation upon Li+ extraction takes place above 4.0 V and is assigned to the oxidation of both Ni and oxygen, while Co remains in a +3 oxidation state during the whole redox process. We also identified the formation of an inactive surface layer already at 4.3 V, rich in reduced Ni and depleted in oxygen. However, at 4.9 V, NiO-like species are detected accompanied with reduced Co. Despite the highly oxidative potential, the surface of the cathode after long cycling is free of oxidized solvent byproducts but contains traces of LiPF6 byproducts (LiF and POxFy). On the LTO counter electrode, transition metals are detected only after long cycling vs NCA to 4.9 V as well as PVdF and LiPF6 byproducts originating from the cathode. Finally, harvested cycled electrodes prove that the influence of the crosstalk on the electrochemical performance of LTO is limited.

1.
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
,
Mater. Today
18
(
5
),
252
264
(
2015
).
2.
F.
Schipper
,
P.
Nayak
,
E.
Erickson
,
S.
Amalraj
,
O.
Srur-Lavi
,
T.
Penki
,
M.
Talianker
,
J.
Grinblat
,
H.
Sclar
,
O.
Breuer
,
C.
Julien
,
N.
Munichandraiah
,
D.
Kovacheva
,
M.
Dixit
,
D.
Major
,
B.
Markovsky
, and
D.
Aurbach
,
Inorganics
5
(
2
),
32
(
2017
).
3.
G. E.
Blomgren
,
J. Electrochem. Soc.
164
(
1
),
A5019
A5025
(
2017
).
4.
P.
He
,
H.
Yu
,
D.
Li
, and
H.
Zhou
,
J. Mater. Chem.
22
(
9
),
3680
3695
(
2012
).
5.
T.
Ohzuku
,
A.
Ueda
, and
M.
Kouguchi
,
J. Electrochem. Soc.
142
(
12
),
4033
4039
(
1995
).
6.
E.
Jo
,
S.
Hwang
,
S. M.
Kim
, and
W.
Chang
,
Chem. Mater.
29
(
7
),
2708
2716
(
2017
).
7.
J.
Shim
,
R.
Kostecki
,
T.
Richardson
,
X.
Song
, and
K. A.
Striebel
,
J. Power Sources
112
(
1
),
222
230
(
2002
).
8.
D. P.
Abraham
,
E. M.
Reynolds
,
E.
Sammann
,
A. N.
Jansen
, and
D. W.
Dees
,
Electrochim. Acta
51
(
3
),
502
510
(
2005
).
9.
A. M.
Andersson
,
D. P.
Abraham
,
R.
Haasch
,
S.
MacLaren
,
J.
Liu
, and
K.
Amine
,
J. Electrochem. Soc.
149
(
10
),
A1358
A1369
(
2002
).
10.
S.
Hwang
,
W.
Chang
,
S. M.
Kim
,
D.
Su
,
D. H.
Kim
,
J. Y.
Lee
,
K. Y.
Chung
, and
E. A.
Stach
,
Chem. Mater.
26
(
2
),
1084
1092
(
2014
).
11.
S.-M.
Bak
,
K.-W.
Nam
,
W.
Chang
,
X.
Yu
,
E.
Hu
,
S.
Hwang
,
E. A.
Stach
,
K.-B.
Kim
,
K. Y.
Chung
, and
X.-Q.
Yang
,
Chem. Mater.
25
(
3
),
337
351
(
2013
).
12.
B.-s.
Liu
,
Z.-B.
Wang
,
F.-D.
Yu
,
Y.
Xue
,
G.-j.
Wang
,
Y.
Zhang
, and
Y.-X.
Zhou
,
RSC Adv.
6
(
110
),
108558
108565
(
2016
).
13.
J.
Hong
,
H.-D.
Lim
,
M.
Lee
,
S.-W.
Kim
,
H.
Kim
,
S.-T.
Oh
,
G.-C.
Chung
, and
K.
Kang
,
Chem. Mater.
24
(
14
),
2692
2697
(
2012
).
14.
R.
Robert
and
P.
Novák
,
J. Electrochem. Soc.
162
(
9
),
A1823
A1828
(
2015
).
15.
P.-C.
Tsai
,
B.
Wen
,
M.
Wolfman
,
M.-J.
Choe
,
M. S.
Pan
,
L.
Su
,
K.
Thornton
,
J.
Cabana
, and
Y.-M.
Chiang
,
Energy Environ. Sci.
11
(
4
),
860
871
(
2018
).
16.
T.
Hayashi
,
J.
Okada
,
E.
Toda
,
R.
Kuzuo
,
N.
Oshimura
,
N.
Kuwata
, and
J.
Kawamura
,
J. Electrochem. Soc.
161
(
6
),
A1007
A1011
(
2014
).
17.
R.
Robert
,
C.
Bünzli
,
E. J.
Berg
, and
P.
Novák
,
Chem. Mater.
27
(
2
),
526
536
(
2015
).
18.
M.
Gauthier
,
T. J.
Carney
,
A.
Grimaud
,
L.
Giordano
,
N.
Pour
,
H.-H.
Chang
,
D. P.
Fenning
,
S. F.
Lux
,
O.
Paschos
,
C.
Bauer
,
F.
Maglia
,
S.
Lupart
,
P.
Lamp
, and
Y.
Shao-Horn
,
J. Phys. Chem. Lett.
6
(
22
),
4653
4672
(
2015
).
19.
F.
Lin
,
I. M.
Markus
,
D.
Nordlund
,
T.-C.
Weng
,
M. D.
Asta
,
H. L.
Xin
, and
M. M.
Doeff
,
Nat. Commun.
5
,
3529
(
2014
).
20.
E.
Flores
,
N.
Vonrüti
,
P.
Novák
,
U.
Aschauer
, and
E. J.
Berg
,
Chem. Mater.
30
(
14
),
4694
4703
(
2018
).
21.
A.
Grenier
,
H.
Liu
,
K. M.
Wiaderek
,
Z. W.
Lebens-Higgins
,
O. J.
Borkiewicz
,
L. F. J.
Piper
,
P. J.
Chupas
, and
K. W.
Chapman
,
Chem. Mater.
29
(
17
),
7345
7352
(
2017
).
22.
M.
Mirolo
,
D.
Leanza
,
L.
Höltschi
,
C.
Jordy
,
V.
Pelé
,
P.
Novák
,
M.
El Kazzi
, and
C. A. F.
Vaz
,
Anal. Chem.
92
(
4
),
3023
3031
(
2020
).
23.
N.
Gauthier
,
C.
Courrèges
,
L.
Goubault
,
J.
Demeaux
,
C.
Tessier
, and
H.
Martinez
,
J. Electrochem. Soc.
165
(
13
),
A2925
A2934
(
2018
).
24.
D.
Leanza
,
M.
Mirolo
,
C. A. F.
Vaz
,
P.
Novák
, and
M.
ElKazzi
,
Batteries Supercaps
2
(
5
),
482
492
(
2019
).
25.
D.
Leanza
,
C. A. F.
Vaz
,
I.
Czekaj
,
P.
Novák
, and
M.
El Kazzi
,
J. Mater. Chem. A
6
(
8
),
3534
3542
(
2018
).
26.
C. A. F.
Vaz
,
A.
Kleibert
, and
M.
El Kazzi
, “
Nanoscale XPEEM spectromicroscopy
,” in
21st Century Nanoscience A Handbook
(
CRC Press
,
2020
), Vol. 3, Chap. 17.
27.
R.
Jung
,
R.
Morasch
,
P.
Karayaylali
,
K.
Phillips
,
F.
Maglia
,
C.
Stinner
,
Y.
Shao-Horn
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
165
(
2
),
A132
A141
(
2018
).
28.
G. V.
Zhuang
,
G.
Chen
,
J.
Shim
,
X.
Song
,
P. N.
Ross
, and
T. J.
Richardson
,
J. Power Sources
134
(
2
),
293
297
(
2004
).
29.
K.
Matsumoto
,
R.
Kuzuo
,
K.
Takeya
, and
A.
Yamanaka
,
J. Power Sources
81-82
,
558
561
(
1999
).
30.
J.
Sicklinger
,
M.
Metzger
,
H.
Beyer
,
D.
Pritzl
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
166
(
12
),
A2322
A2335
(
2019
).
31.
L. A.
Montoro
,
M.
Abbate
, and
J. M.
Rosolen
,
J. Electrochem. Soc.
147
(
5
),
1651
1657
(
2000
).
32.
W.-S.
Yoon
,
K. Y.
Chung
,
J.
McBreen
,
D. A.
Fischer
, and
X.-Q.
Yang
,
J. Power Sources
174
(
2
),
1015
1020
(
2007
).
33.
S.
Sallis
,
N.
Pereira
,
P.
Mukherjee
,
N. F.
Quackenbush
,
N.
Faenza
,
C.
Schlueter
,
T.-L.
Lee
,
W. L.
Yang
,
F.
Cosandey
,
G. G.
Amatucci
, and
L. F. J.
Piper
,
Appl. Phys. Lett.
108
(
26
),
263902
(
2016
).
34.
R.
Qiao
,
Y.-D.
Chuang
,
S.
Yan
, and
W.
Yang
,
PLoS One
7
(
11
),
e49182
(
2012
).
35.
S.
Zheng
,
R.
Huang
,
Y.
Makimura
,
Y.
Ukyo
,
C. A. J.
Fisher
,
T.
Hirayama
, and
Y.
Ikuhara
,
J. Electrochem. Soc.
158
(
4
),
A357
A362
(
2011
).
36.
W.-S.
Yoon
,
K.-B.
Kim
,
M.-G.
Kim
,
M.-K.
Lee
,
H.-J.
Shin
,
J.-M.
Lee
,
J.-S.
Lee
, and
C.-H.
Yo
,
J. Phys. Chem. B
106
(
10
),
2526
2532
(
2002
).
37.
D.
Leanza
,
C. A. F.
Vaz
,
G.
Melinte
,
X.
Mu
,
P.
Novák
, and
M.
El Kazzi
,
ACS Appl. Mater. Interfaces
11
(
6
),
6054
6065
(
2019
).
38.
H.
Zhang
,
B. M.
May
,
F.
Omenya
,
M. S.
Whittingham
,
J.
Cabana
, and
G.
Zhou
,
Chem. Mater.
31
(
18
),
7790
7798
(
2019
).
39.
K.
Luo
,
M. R.
Roberts
,
R.
Hao
,
N.
Guerrini
,
D. M.
Pickup
,
Y.-S.
Liu
,
K.
Edström
,
J.
Guo
,
A. V.
Chadwick
,
L. C.
Duda
, and
P. G.
Bruce
,
Nat. Chem.
8
,
684
(
2016
).
40.
K.
Luo
,
M. R.
Roberts
,
N.
Guerrini
,
N.
Tapia-Ruiz
,
R.
Hao
,
F.
Massel
,
D. M.
Pickup
,
S.
Ramos
,
Y.-S.
Liu
,
J.
Guo
,
A. V.
Chadwick
,
L. C.
Duda
, and
P. G.
Bruce
,
J. Am. Chem. Soc.
138
(
35
),
11211
11218
(
2016
).
41.
W. E.
Gent
,
K.
Lim
,
Y.
Liang
,
Q.
Li
,
T.
Barnes
,
S.-J.
Ahn
,
K. H.
Stone
,
M.
McIntire
,
J.
Hong
,
J. H.
Song
,
Y.
Li
,
A.
Mehta
,
S.
Ermon
,
T.
Tyliszczak
,
D.
Kilcoyne
,
D.
Vine
,
J.-H.
Park
,
S.-K.
Doo
,
M. F.
Toney
,
W.
Yang
,
D.
Prendergast
, and
W. C.
Chueh
,
Nat. Commun.
8
(
1
),
2091
(
2017
).
42.
J.
Wu
,
Z.
Zhuo
,
X.
Rong
,
K.
Dai
,
Z.
Lebens-Higgins
,
S.
Sallis
,
F.
Pan
,
L. F. J.
Piper
,
G.
Liu
,
Y.-d.
Chuang
,
Z.
Hussain
,
Q.
Li
,
R.
Zeng
,
Z.-x.
Shen
, and
W.
Yang
,
Sci. Adv.
6
(
6
),
eaaw3871
(
2020
).
43.
Z. W.
Lebens-Higgins
,
N. V.
Faenza
,
M. D.
Radin
,
H.
Liu
,
S.
Sallis
,
J.
Rana
,
J.
Vinckeviciute
,
P. J.
Reeves
,
M. J.
Zuba
,
F.
Badway
,
N.
Pereira
,
K. W.
Chapman
,
T.-L.
Lee
,
T.
Wu
,
C. P.
Grey
,
B. C.
Melot
,
A.
Van Der Ven
,
G. G.
Amatucci
,
W.
Yang
, and
L. F. J.
Piper
,
J. Mater. Horiz.
6
(
10
),
2112
2123
(
2019
).
44.
A.
Guéguen
,
D.
Streich
,
M.
He
,
M.
Mendez
,
F. F.
Chesneau
,
P.
Novák
, and
E. J.
Berg
,
J. Electrochem. Soc.
163
(
6
),
A1095
A1100
(
2016
).
45.
K.
Kleiner
,
J.
Melke
,
M.
Merz
,
P.
Jakes
,
P.
Nagel
,
S.
Schuppler
,
V.
Liebau
, and
H.
Ehrenberg
,
ACS Appl. Mater. Interfaces
7
(
35
),
19589
19600
(
2015
).
46.
M.
Moshkovich
,
M.
Cojocaru
,
H. E.
Gottlieb
, and
D.
Aurbach
,
J. Electroanal. Chem.
497
(
1
),
84
96
(
2001
).
47.
L.
Bodenes
,
R.
Dedryvère
,
H.
Martinez
,
F.
Fischer
,
C.
Tessier
, and
J.-P.
Pérès
,
J. Electrochem. Soc.
159
(
10
),
A1739
A1746
(
2012
).
48.
Z. W.
Lebens-Higgins
,
S.
Sallis
,
N. V.
Faenza
,
F.
Badway
,
N.
Pereira
,
D. M.
Halat
,
M.
Wahila
,
C.
Schlueter
,
T.-L.
Lee
,
W.
Yang
,
C. P.
Grey
,
G. G.
Amatucci
, and
L. F. J.
Piper
,
Chem. Mater.
30
(
3
),
958
969
(
2018
).
49.
N. V.
Faenza
,
Z. W.
Lebens-Higgins
,
P.
Mukherjee
,
S.
Sallis
,
N.
Pereira
,
F.
Badway
,
A.
Halajko
,
G.
Ceder
,
F.
Cosandey
,
L. F. J.
Piper
, and
G. G.
Amatucci
,
Langmuir
33
(
37
),
9333
9353
(
2017
).

Supplementary Material

You do not currently have access to this content.