The morphology of interfaces is known to play a fundamental role in the efficiency of energy-related applications, such as light harvesting or ion intercalation. Altering the morphology on demand, however, is a very difficult task. Here, we show ways the morphology of interfaces can be tuned by driven electron transfer reactions. By using non-equilibrium thermodynamic stability theory, we uncover the operating conditions that alter the interfacial morphology. We apply the theory to ion intercalation and surface growth where electrochemical reactions are described using Butler–Volmer or coupled ion–electron transfer kinetics. The latter connects microscopic/quantum mechanical concepts with the morphology of electrochemical interfaces. Finally, we construct non-equilibrium phase diagrams in terms of the applied driving force (current/voltage) and discuss the importance of engineering the density of states of the electron donor in applications related to energy harvesting and storage, electrocatalysis, and photocatalysis.

1.
N. M.
Markovic
, “
Electrocatalysis: Interfacing electrochemistry
,”
Nat. Mater.
12
,
101
(
2013
).
2.
V. R.
Stamenkovic
,
D.
Strmcnik
,
P. P.
Lopes
, and
N. M.
Markovic
, “
Energy and fuels from electrochemical interfaces
,”
Nat. Mater.
16
,
57
(
2017
).
3.
M.
Schlesinger
and
M.
Paunovic
,
Modern Electroplating
(
John Wiley & Sons
,
2011
), Vol. 55.
4.
C. T. J.
Low
,
R. G. A.
Wills
, and
F. C.
Walsh
, “
Electrodeposition of composite coatings containing nanoparticles in a metal deposit
,”
Surf. Coat. Technol.
201
,
371
383
(
2006
).
5.
J.-H.
Han
,
E.
Khoo
,
P.
Bai
, and
M. Z.
Bazant
, “
Over-limiting current and control of dendritic growth by surface conduction in nanopores
,”
Sci. Rep.
4
,
7056
(
2014
).
6.
J.-H.
Han
,
M.
Wang
,
P.
Bai
,
F. R.
Brushett
, and
M. Z.
Bazant
, “
Dendrite suppression by shock electrodeposition in charged porous media
,”
Sci. Rep.
6
,
28054
(
2016
).
7.
Y.
Lu
,
Z.
Tu
, and
L. A.
Archer
, “
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
,”
Nat. Mater.
13
,
961
969
(
2014
).
8.
M. D.
Tikekar
,
S.
Choudhury
,
Z.
Tu
, and
L. A.
Archer
, “
Design principles for electrolytes and interfaces for stable lithium-metal batteries
,”
Nat. Energy
1
,
16114
(
2016
).
9.
P.
Bai
,
J.
Li
,
F. R.
Brushett
, and
M. Z.
Bazant
, “
Transition of lithium growth mechanisms in liquid electrolytes
,”
Energy Environ. Sci.
9
,
3221
3229
(
2016
).
10.
I.
McCue
,
E.
Benn
,
B.
Gaskey
, and
J.
Erlebacher
, “
Dealloying and dealloyed materials
,”
Annu. Rev. Mater. Res.
46
,
263
286
(
2016
).
11.
J.
Erlebacher
,
M. J.
Aziz
,
A.
Karma
,
N.
Dimitrov
, and
K.
Sieradzki
, “
Evolution of nanoporosity in dealloying
,”
Nature
410
,
450
453
(
2001
); arXiv:0103615 [cond-mat].
12.
J.
Erlebacher
and
K.
Sieradzki
, “
Pattern formation during dealloying
,”
Scr. Mater.
49
,
991
996
(
2003
).
13.
M. S.
Whittingham
, “
Electrical energy storage and intercalation chemistry
,”
Science
192
,
1126
1127
(
1976
).
14.
N.
Nitta
,
F.
Wu
,
J. T.
Lee
, and
G.
Yushin
, “
Li-ion battery materials: Present and future
,”
Mater. Today
18
,
252
264
(
2015
); arXiv:1011.1669v3.
15.
Y.
Li
and
W. C.
Chueh
, “
Electrochemical and chemical insertion for energy transformation and switching
,”
Annu. Rev. Mater. Res.
48
,
137
165
(
2018
).
16.
J.
Lim
,
Y.
Li
,
D. H.
Alsem
,
H.
So
,
S. C.
Lee
,
P.
Bai
,
D. A.
Cogswell
,
X.
Liu
,
N.
Jin
,
Y.-s.
Yu
,
N. J.
Salmon
,
D. A.
Shapiro
,
M. Z.
Bazant
,
T.
Tyliszczak
, and
W. C.
Chueh
, “
Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
,”
Science
353
,
566
571
(
2016
).
17.
C. G.
Vayenas
,
S.
Bebelis
,
I. V.
Yentekakis
, and
H.-G.
Lintz
, “
Non-Faradaic electrochemical modification of catalytic activity: A status report
,”
Catal. Today
11
,
303
438
(
1992
).
18.
R. M.
Ormerod
, “
Solid oxide fuel cells
,”
Chem. Soc. Rev.
32
,
17
28
(
2003
).
19.
Q.
Lu
,
S. R.
Bishop
,
D.
Lee
,
S.
Lee
,
H.
Bluhm
,
H. L.
Tuller
,
H. N.
Lee
, and
B.
Yildiz
, “
Electrochemically triggered metal–insulator transition between VO2 and V2O5
,”
Adv. Funct. Mater.
28
,
1803024
(
2018
).
20.
P.
Mazumder
,
S. M.
Kang
, and
R.
Waser
, “
Memristors: Devices, models, and applications
,”
Proc. IEEE
100
,
1911
1919
(
2012
).
21.
I.
Valov
,
E.
Linn
,
S.
Tappertzhofen
,
S.
Schmelzer
,
J.
van den Hurk
,
F.
Lentz
, and
R.
Waser
, “
Nanobatteries in redox-based resistive switches require extension of memristor theory
,”
Nat. Commun.
4
,
1771
(
2013
).
22.
J. C.
Gonzalez-Rosillo
,
M.
Balaish
,
Z. D.
Hood
,
N.
Nadkarni
,
D.
Fraggedakis
,
K. J.
Kim
,
K. M.
Mullin
,
R.
Pfenninger
,
M. Z.
Bazant
, and
J. L.
Rupp
, “
Lithium-battery anode gains additional functionality for neuromorphic computing through metal–insulator phase separation
,”
Adv. Mater.
32
,
1907465
(
2020
).
23.
M. Z.
Bazant
, “
Thermodynamic stability of driven open systems and control of phase separation by electroautocatalysis
,”
Faraday Discuss.
199
,
423
(
2017
).
24.
A. S.
Mikhailov
and
G.
Ertl
, “
Nonequilibrium microstructures in reactive monolayers as soft matter systems
,”
ChemPhysChem
10
,
86
100
(
2009
).
25.
H.
Zhao
and
M. Z.
Bazant
, “
Population dynamics of driven autocatalytic reactive mixtures
,”
Phys. Rev. E
100
,
012144
(
2019
).
26.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods
(
John Wiley & Sons, Inc.
,
New York, NY
,
2001
).
27.
J.
Newman
and
K. E.
Thomas-Alyea
,
Electrochemical Systems
, 3rd ed. (
John Wiley & Sons
,
Hoboken, NJ
,
2004
).
28.
A. M.
Kuznetsov
and
J.
Ulstrup
,
Electron Transfer in Chemistry and Biology: An Introduction to the Theory
(
Wiley
,
1999
).
29.
R. A.
Marcus
, “
Chemical and electrochemical electron-transfer theory
,”
Annu. Rev. Phys. Chem.
15
,
155
196
(
1964
).
30.
R. A.
Marcus
, “
Electron transfer reactions in chemistry. Theory and experiment
,”
Rev. Mod. Phys.
65
,
599
610
(
1993
).
31.
N. S.
Hush
, “
Adiabatic theory of outer sphere electron-transfer reactions in solution
,”
Trans. Faraday Soc.
57
,
557
580
(
1961
).
32.
V. G.
Levich
, “
Present state of the theory of oxidation-reduction in solution (bulk and electrode reactions)
,” in
Advances in Electrochemistry and Electrochemical Engineering
, edited by
P.
Delahay
and
C. W.
Tobias
(
Interscience
,
New York
,
1966
), Vol. 4, pp.
249
371
.
33.
C. E. D.
Chidsey
, “
Free energy and temperature dependence of electron transfer at the metal-electrolyte interface
,”
Science
251
,
919
922
(
1991
).
34.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Ionic liquids at electrified interfaces
,”
Chem. Rev.
114
,
2978
3036
(
2014
).
35.
R. J.
Mortimer
, “
Electrochromic materials
,”
Annu. Rev. Mater. Res.
41
,
241
268
(
2011
).
36.
P.
Yang
,
P.
Sun
, and
W.
Mai
, “
Electrochromic energy storage devices
,”
Mater. Today
19
,
394
402
(
2016
).
37.
E. J.
Fuller
,
F. E.
Gabaly
,
F.
Léonard
,
S.
Agarwal
,
S. J.
Plimpton
,
R. B.
Jacobs-Gedrim
,
C. D.
James
,
M. J.
Marinella
, and
A. A.
Talin
, “
Li-ion synaptic transistor for low power analog computing
,”
Adv. Mater.
29
,
1604310
(
2017
).
38.
Y.
Lykhach
,
S. M.
Kozlov
,
T.
Skála
,
A.
Tovt
,
V.
Stetsovych
,
N.
Tsud
,
F.
Dvořák
,
V.
Johánek
,
A.
Neitzel
,
J.
Mysliveček
,
S.
Fabris
,
V.
Matolín
,
K. M.
Neyman
, and
J.
Libuda
, “
Counting electrons on supported nanoparticles
,”
Nat. Mater.
15
,
284
288
(
2016
).
39.
L. D.
Marks
and
L.
Peng
, “
Nanoparticle shape, thermodynamics and kinetics
,”
J. Phys.: Condens. Matter
28
,
053001
(
2016
).
40.
R. M.
Penner
, “
Hybrid electrochemical/chemical synthesis of quantum dots
,”
Acc. Chem. Res.
33
,
78
86
(
2000
).
41.
S.
Ohtsu
,
K.
Shimizu
,
K.
Yatsuda
, and
E.
Akutsu
, “
Method of forming crystalline semiconductor thin film on base substrate, lamination formed with crystalline semiconductor thin film and color filter
,” U.S. patent 6,680,242 (
20 January 2004
).
42.
C. D.
Lokhande
and
S. H.
Pawar
, “
Electrodeposition of thin film semiconductors
,”
Phys. Status Solidi A
111
,
17
40
(
1989
).
43.
J.
Mandal
,
D.
Wang
,
A. C.
Overvig
,
N. N.
Shi
,
D.
Paley
,
A.
Zangiabadi
,
Q.
Cheng
,
K.
Barmak
,
N.
Yu
, and
Y.
Yang
, “
Scalable, “dip-and-dry” fabrication of a wide-angle plasmonic selective absorber for high-efficiency solar–thermal energy conversion
,”
Adv. Mater.
29
,
1702156
(
2017
).
44.
B.
Horstmann
,
B.
Gallant
,
R.
Mitchell
,
W. G.
Bessler
,
Y.
Shao-Horn
, and
M. Z.
Bazant
, “
Rate-dependent morphology of Li2O2 growth in Li–O2 batteries
,”
J. Phys. Chem. Lett.
4
,
4217
4222
(
2013
).
45.
B. M.
Gallant
,
R. R.
Mitchell
,
D. G.
Kwabi
,
J.
Zhou
,
L.
Zuin
,
C. V.
Thompson
, and
Y.
Shao-Horn
, “
Chemical and morphological changes of LiO2 battery electrodes upon cycling
,”
J. Phys. Chem. C
116
,
20800
20805
(
2012
).
46.
R. R.
Mitchell
,
B. M.
Gallant
,
Y.
Shao-Horn
, and
C. V.
Thompson
, “
Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth
,”
J. Phys. Chem. Lett.
4
,
1060
1064
(
2013
).
47.
E.
Khoo
,
H.
Zhao
, and
M. Z.
Bazant
, “
Linear stability analysis of transient electrodeposition in charged porous media: Suppression of dendritic growth by surface conduction
,”
J. Electrochem. Soc.
166
,
A2280
A2299
(
2019
).
48.
P.
Bai
,
D. A.
Cogswell
, and
M. Z.
Bazant
, “
Suppression of phase separation in LiFePO4 nanoparticles during battery discharge
,”
Nano Lett.
11
,
4890
4896
(
2011
).
49.
W. W.
Mullins
, “
Theory of thermal grooving
,”
J. Appl. Phys.
28
,
333
339
(
1957
).
50.
D.
Fraggedakis
,
M.
McEldrew
,
R. B.
Smith
,
Y.
Krishnan
,
Y.
Zhang
,
W.
Chueh
,
P.
Bai
,
Y.
Shao-Horn
, and
M. Z.
Bazant
, “
Theory of coupled ion-electron transfer kinetics
,” (unpublished) (
2020
).
51.
S. G.
Christov
,
Collision Theory and Statistical Theory of Chemical Reactions
(
Springer Science & Business Media
,
2012
), Vol. 18.
52.
J.
Keizer
,
Statistical Thermodynamics of Nonequilibrium Processes
(
Springer Science & Business Media
,
2012
).
53.
M. Z.
Bazant
, “
Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics
,”
Acc. Chem. Res.
46
,
1144
1160
(
2013
).
54.
D. G.
Truhlar
,
W. L.
Hase
, and
J. T.
Hynes
, “
Current status of transition-state theory
,”
J. Phys. Chem.
87
,
2664
2682
(
1983
).
55.
J. A. V.
Butler
, “
Studies in heterogeneous equilibria. Part III. A kinetic theory of reversible oxidation potentials at inert electrodes
,”
Trans. Faraday Soc.
19
,
734
739
(
1924
).
56.
T.
Erdey-Grúz
and
M.
Volmer
, “
The theory of hydrogen overvoltage
,”
Z. Phys. Chem.
150A
,
203
213
(
1930
).
57.
R. A.
Marcus
, “
On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions
,”
J. Chem. Phys.
43
,
679
(
1965
).
58.
W.
Schmickler
and
E.
Santos
,
Interfacial Electrochemistry
(
Springer Science & Business Media
,
2010
).
59.
R. A.
Marcus
, “
On the theory of oxidation-reduction reactions involving electron transfer. I
,”
J. Chem. Phys.
24
,
966
(
1956
).
60.
V. G.
Levich
and
R. R.
Dogonadze
, “
Osnovnie voprosi sovremenoi teoreticheskoi elektrokhimii
,” in
14th CITCE Meeting
Moskow
,
1963
), p.
21
.
61.
W.
Schmickler
, “
A theory of adiabatic electron-transfer reactions
,”
J. Electroanal. Chem.
204
,
31
43
(
1986
).
62.
L. D.
Landau
, “
Electron motion in crystal lattices
,”
Phys. Z. Sowjetunion.
3
,
664
(
1933
).
63.
S.
Pekar
and
M.
Deigen
, “
Quantum states and optical transitions of electrons in polarons and in color centers of crystals
,”
Ukr. J. Phys.
53
,
78
82
(
2008
).
64.
H.
Fröhlich
,
H.
Pelzer
, and
S.
Zienau
, “
XX. Properties of slow electrons in polar materials
,”
Philos Mag.
41
,
221
242
(
1950
).
65.
T.
Holstein
, “
Studies of polaron motion: Part I. The molecular-crystal model
,”
Ann. Phys.
8
,
325
342
(
1959
).
66.
T.
Holstein
, “
Studies of polaron motion: Part II. The “small” polaron
,”
Ann. Phys.
8
,
343
389
(
1959
).
67.
Y.
Toyozawa
, “
Theory of the electronic polaron and ionization of a trapped electron by an exciton
,”
Prog. Theor. Phys.
12
,
421
442
(
1954
).
68.
Y.
Zeng
,
R. B.
Smith
,
P.
Bai
, and
M. Z.
Bazant
, “
Simple formula for Marcus–Hush–Chidsey kinetics
,”
J. Electroanal. Chem.
735
,
77
83
(
2014
).
69.
W.
Schmickler
,
E.
Santos
,
M.
Bronshtein
, and
R.
Nazmutdinov
, “
Adiabatic electron-transfer reactions on semiconducting electrodes
,”
ChemPhysChem
18
,
111
116
(
2017
).
70.
Y.
Li
,
H.
Chen
,
K.
Lim
,
H. D.
Deng
,
J.
Lim
,
D.
Fraggedakis
,
P. M.
Attia
,
S. C.
Lee
,
N.
Jin
,
J.
Moškon
,
Z.
Guan
,
W. E.
Gent
,
J.
Hong
,
Y.-S.
Yu
,
M.
Gaberšček
,
M. S.
Islam
,
M. Z.
Bazant
, and
W. C.
Chueh
, “
Fluid-enhanced surface diffusion controls intraparticle phase transformations
,”
Nat. Mater.
17
,
915
922
(
2018
).
71.
D. A.
Cogswell
and
M. Z.
Bazant
, “
Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles
,”
ACS Nano
6
,
2215
2225
(
2012
).
72.
Y.
Li
,
F.
El Gabaly
,
T. R.
Ferguson
,
R. B.
Smith
,
N. C.
Bartelt
,
J. D.
Sugar
,
K. R.
Fenton
,
D. A.
Cogswell
,
A. L. D.
Kilcoyne
,
T.
Tyliszczak
,
M. Z.
Bazant
, and
W. C.
Chueh
, “
Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes
,”
Nat. Mater.
13
,
1149
1156
(
2014
).
73.
N.
Nadkarni
,
E.
Rejovitzky
,
D.
Fraggedakis
,
C. V.
Di Leo
,
R. B.
Smith
,
P.
Bai
, and
M. Z.
Bazant
, “
Interplay of phase boundary anisotropy and electro-autocatalytic surface reactions on the lithium intercalation dynamics in LiXFePO4 platelet-like nanoparticles
,”
Phys. Rev.Mater.
2
,
085406
(
2018
).
74.
N.
Nadkarni
,
T.
Zhou
,
D.
Fraggedakis
,
T.
Gao
, and
M. Z.
Bazant
, “
Modeling the metal–insulator phase transition in LiXCoO2 for energy and information storage
,”
Adv. Funct. Mater.
29
,
1902821
(
2019
).
75.
J. W.
Cahn
and
J. E.
Hilliard
, “
Free energy of a nonuniform system. I. Interfacial free energy
,”
J. Chem. Phys.
28
,
258
(
1958
).
76.
J. S.
Rowlinson
, “
Translation of J. D. van der Waals’ “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”
,”
J. Stat. Phys.
20
,
197
200
(
1979
).
77.
M.
Kardar
,
G.
Parisi
, and
Y.-C.
Zhang
, “
Dynamic scaling of growing interfaces
,”
Phys. Rev. Lett.
56
,
889
(
1986
).
78.
P.
Bai
and
M. Z.
Bazant
, “
Charge transfer kinetics at the solid–solid interface in porous electrodes
,”
Nat. Commun.
5
,
3585
(
2014
).
79.
V.
Viswanathan
,
J. K.
Nørskov
,
A.
Speidel
,
R.
Scheffler
,
S.
Gowda
, and
A. C.
Luntz
, “
Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory
,”
J. Phys. Chem. Lett.
4
,
556
560
(
2013
).
80.
N.
Yabuuchi
and
T.
Ohzuku
, “
Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries
,”
J. Power Sources
119-121
,
171
174
(
2003
).
81.
S.
Jouanneau
,
D. D.
MacNeil
,
Z.
Lu
,
S. D.
Beattie
,
G.
Murphy
, and
J. R.
Dahn
, “
Synthesis, characterization, and electrochemical behavior of improved Li[NixCo1−2xMnx]O2(0 ≤ x ≤ 0.5)
,”
J. Electrochem. Soc.
150
,
A1299
A1642
(
2003
).
82.
W. E.
Gent
,
Y.
Li
,
S.
Ahn
,
J.
Lim
,
Y.
Liu
,
A. M.
Wise
,
C. B.
Gopal
,
D. N.
Mueller
,
R.
Davis
,
J. N.
Weker
,
J.-H.
Park
,
S.-K.
Doo
, and
W. C.
Chueh
, “
Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles
,”
Adv. Mater.
28
,
6631
6638
(
2016
).
83.
A.
Grenier
,
H.
Liu
,
K. M.
Wiaderek
,
Z. W.
Lebens-Higgins
,
O. J.
Borkiewicz
,
L. F. J.
Piper
,
P. J.
Chupas
, and
K. W.
Chapman
, “
Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer
,”
Chem. Mater.
29
,
7345
7352
(
2017
).
84.
Y. N.
Zhou
,
J. L.
Yue
,
E.
Hu
,
H.
Li
,
L.
Gu
,
K. W.
Nam
,
S. M.
Bak
,
X.
Yu
,
J.
Liu
,
J.
Bai
,
E.
Dooryhee
,
Z. W.
Fu
, and
X. Q.
Yang
, “
High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries
,”
Adv. Energy Mater.
6
,
1600597
(
2016
).
85.
R.
Koerver
,
I.
Aygün
,
T.
Leichtweiß
,
C.
Dietrich
,
W.
Zhang
,
J. O.
Binder
,
P.
Hartmann
,
W. G.
Zeier
, and
J.
Janek
, “
Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes
,”
Chem. Mater.
29
,
5574
5582
(
2017
).
86.
H.
Hussain
,
G.
Tocci
,
T.
Woolcot
,
X.
Torrelles
,
C. L.
Pang
,
D. S.
Humphrey
,
C. M.
Yim
,
D. C.
Grinter
,
G.
Cabailh
,
O.
Bikondoa
,
R.
Lindsay
,
J.
Zegenhagen
,
A.
Michaelides
, and
G.
Thornton
, “
Structure of a model TiO2 photocatalytic interface
,”
Nat. Mater.
16
,
461
467
(
2017
).
87.
D.
Kondepudi
and
I.
Prigogine
,
Modern Thermodynamics: From Heat Engines to Dissipative Structures
(
John Wiley & Sons
,
2014
).
88.
P.
Glansdorff
and
I.
Prigogine
,
Structure, Stability and Fluctuations
(
Interscience
,
New York, NY
,
1971
).
89.
A. P.
Solon
,
J.
Stenhammar
,
M. E.
Cates
,
Y.
Kafri
, and
J.
Tailleur
, “
Generalized thermodynamics of phase equilibria in scalar active matter
,”
Phys. Rev. E
97
,
020602
(
2018
).
90.
J. W.
Cahn
, “
On spinodal decomposition
,”
Acta Metall.
9
,
795
801
(
1961
).
You do not currently have access to this content.