In the electrode/electrolyte interface of a typical lithium-ion battery, a solid electrolyte interphase layer is formed as a result of electrolyte decomposition during the initial charge/discharge cycles. Electron leakage from the anode to the electrolyte reduces the Li+-ion and makes it more reactive, resulting in decomposition of the organic electrolyte. To study the Li-electrolyte solvation, solvent exchange, and subsequent solvent decomposition reactions at the anode/electrolyte interface, we have extended the existing ReaxFF reactive force field parameter sets to organic electrolyte species, such as ethylene carbonate, ethyl methyl carbonate, vinylene carbonate, and LiPF6 salt. Density Functional Theory (DFT) data describing Li-associated initiation reactions for the organic electrolytes and binding energies of Li-electrolyte solvation structures were generated and added to the existing ReaxFF training data, and subsequently, we trained the ReaxFF parameters with the aim of finding the optimal reproduction of the DFT data. In order to discern the characteristics of the Li neutral and cation, we have introduced a second Li parameter set to describe the Li+-ion. ReaxFF is trained for Li-neutral and Li+-cation to have similar solvation energies, but unlike the neutral Li, Li+ will not induce reactivity in the organic electrolyte. Solvent decomposition reactions are presumed to happen once Li+-ions are reduced to Li-atoms, which can be simulated using a Monte Carlo type atom modification within ReaxFF. This newly developed force field is capable of distinguishing between a Li-atom and a Li+-ion properly. Moreover, it is found that the solvent decomposition reaction barrier is a function of the number of ethylene carbonate molecules solvating the Li-atom.

1.
E.
Peled
,
J. Electrochem. Soc.
126
,
2047
(
1979
).
2.
M.
Winter
,
Z. Phys. Chem.
223
,
1395
(
2009
).
3.
P.
Verma
,
P.
Maire
, and
P.
Novák
,
Electrochim. Acta
55
,
6332
(
2010
).
4.
E.
Markervich
,
G.
Salitra
,
M. D.
Levi
, and
D.
Aurbach
,
J. Power Sources
146
,
146
(
2005
).
5.
6.
D.
Aurbach
,
B.
Markovsky
,
M. D.
Levi
,
E.
Levi
,
A.
Schechter
,
M.
Moshkovich
, and
Y.
Cohen
,
J. Power Sources
81-82
,
95
(
1999
).
8.
M.
Armand
and
J.-M.
Tarascon
,
Nature
451
,
652
(
2008
).
9.
M.
Broussely
,
P.
Biensan
, and
B.
Simon
,
Electrochim. Acta
45
,
3
(
1999
).
10.
T.
Tanaka
,
K.
Ohta
, and
N.
Arai
,
J. Power Sources
97-98
,
2
(
2001
).
11.
N.
Terada
,
T.
Yanagi
,
S.
Arai
,
M.
Yoshikawa
,
K.
Ohta
,
N.
Nakajima
,
A.
Yanai
, and
N.
Arai
,
J. Power Sources
100
,
80
(
2001
).
12.
D.
Aurbach
,
Y.
Talyosef
,
B.
Markovsky
,
E.
Markevich
,
E.
Zinigrad
,
L.
Asraf
,
J. S.
Gnanaraj
, and
H.-J.
Kim
,
Electrochim. Acta
50
,
247
(
2004
).
13.
E.
Cazzanelli
,
P.
Mustarelli
,
F.
Benevelli
,
G. B.
Appetecchi
, and
F.
Croce
,
Solid State Ionics
86-88
,
379
(
1996
).
14.
M.
Morita
,
Y.
Asai
,
N.
Yoshimoto
, and
M.
Ishikawa
,
J. Chem. Soc., Faraday Trans.
94
,
3451
(
1998
).
15.
Y.
Kameda
,
Y.
Umebayashi
,
M.
Takeuchi
,
M. A.
Wahab
,
S.
Fukuda
,
S.
Ishiguro
,
M.
Sasaki
,
Y.
Amo
, and
T.
Usuki
,
J. Phys. Chem. B
111
,
6104
(
2007
).
16.
O.
Borodin
and
G. D.
Smith
,
J. Phys. Chem. B
110
,
4971
(
2006
).
17.
J.-C.
Soetens
,
C.
Millot
, and
B.
Maigret
,
J. Phys. Chem. A
102
,
1055
(
1998
).
18.
M.
Masia
,
M.
Probst
, and
R.
Rey
,
J. Phys. Chem. B
108
,
2016
(
2004
).
19.
K.
Tasaki
,
A.
Goldberg
, and
M.
Winter
,
Electrochim. Acta
56
,
10424
(
2011
).
20.
P.
Ganesh
,
D.
Jiang
, and
P. R. C.
Kent
,
J. Phys. Chem. B
115
,
3085
(
2011
).
21.
M. D.
Bhatt
,
M.
Cho
, and
K.
Cho
,
Modell. Simul. Mater. Sci. Eng.
20
,
065004
(
2012
).
22.
O.
Borodin
and
G. D.
Smith
,
J. Phys. Chem. B
113
,
1763
(
2009
).
23.
M. T.
Ong
,
O.
Verners
,
E. W.
Draeger
,
A. C. T.
Van Duin
,
V.
Lordi
, and
J. E.
Pask
,
J. Phys. Chem. B
119
,
1535
(
2015
).
24.
A.
Wang
,
S.
Kadam
,
H.
Li
,
S.
Shi
, and
Y.
Qi
,
npj Comput. Mater.
4
,
15
(
2018
).
25.
Y.
Wang
,
S.
Nakamura
,
M.
Ue
, and
P. B.
Balbuena
,
J. Am. Chem. Soc.
123
,
11708
(
2001
).
26.
K.
Leung
and
J. L.
Budzien
,
Phys. Chem. Chem. Phys.
12
,
6583
(
2010
).
27.
D.
Bedrov
,
G. D.
Smith
, and
A. C. T.
Van Duin
,
J. Phys. Chem. A
116
,
2978
(
2012
).
28.
A. C. T.
Van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem. A
105
,
9396
(
2001
).
29.
M. M.
Islam
and
A. C. T.
Van Duin
,
J. Phys. Chem. C
120
,
27128
(
2016
).
30.
M. M.
Islam
,
G.
Kolesov
,
T.
Verstraelen
,
E.
Kaxiras
, and
A. C. T.
Van Duin
,
J. Chem. Theory Comput.
12
,
3463
(
2016
).
31.
K.
Tasaki
,
J. Phys. Chem. B
109
,
2920
(
2005
).
32.
K.
Ushirogata
,
K.
Sodeyama
,
Y.
Okuno
, and
Y.
Tateyama
,
J. Am. Chem. Soc.
135
,
11967
(
2013
).
33.
34.
D. W.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
).
35.
36.
A. C. T.
Van Duin
,
A.
Strachan
,
S.
Stewman
,
Q.
Zhang
,
X.
Xu
, and
W. A.
Goddard
,
J. Phys. Chem. A
107
,
3803
(
2003
).
37.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
,
J. Am. Chem. Soc.
108
,
4315
(
1986
).
38.
T.
Verstraelen
,
P. W.
Ayers
,
V.
Van Speybroeck
, and
M.
Waroquier
,
J. Chem. Phys.
138
,
074108
(
2013
).
39.
C.
Ashraf
and
A. C. T.
Van Duin
,
J. Phys. Chem. A
121
,
1051
(
2017
).
40.
X.
Wang
,
G.
Pawar
,
Y.
Li
,
X.
Ren
,
M.
Zhang
,
B.
Lu
,
A.
Banerjee
,
P.
Liu
,
E. J.
Dufek
,
J.-G.
Zhang
,
J.
Xiao
,
J.
Liu
,
Y. S.
Meng
, and
B.
Liaw
, arXiv: 1910.11513 (
2019
).
41.
M. M.
Islam
,
V. S.
Bryantsev
, and
A. C. T.
van Duin
,
J. Electrochem. Soc.
161
,
E3009
(
2014
).
42.
M. M.
Islam
,
A.
Ostadhossein
,
O.
Borodin
,
A. T.
Yeates
,
W. W.
Tipton
,
R. G.
Hennig
,
N.
Kumar
, and
A. C. T.
Van Duin
,
Phys. Chem. Chem. Phys.
17
,
3383
(
2015
).
43.
R.
Lotfi
,
D. E.
Yilmaz
,
L.
Vlcek
, and
A.
van Duin
,
2D Metal Carbides and Nitrides
(
Springer
,
2019
), pp.
137
157
.
44.
K.
Mondal
,
T.
Maitra
,
A. K.
Srivastava
,
G.
Pawar
,
M. D.
McMurtrey
, and
A.
Sharma
,
Ind. Eng. Chem. Res.
59
,
1944
(
2020
).
45.
D.
Akbarian
,
H.
Hamedi
,
B.
Damirchi
,
D. E.
Yilmaz
,
K.
Penrod
,
W. H. H.
Woodward
,
J.
Moore
,
M. T.
Lanagan
, and
A. C. T.
van Duin
,
Polymer
183
,
121901
(
2019
).
46.
G.
Pawar
,
P.
Meakin
, and
H.
Huang
,
Energy Fuels
31
,
11601
(
2017
).
47.
D.
Akbarian
,
D. E.
Yilmaz
,
Y.
Cao
,
P.
Ganesh
,
I.
Dabo
,
J.
Munro
,
R.
Van Ginhoven
, and
A. C. T.
van Duin
,
Phys. Chem. Chem. Phys.
21
,
18240
(
2019
).
48.
K. L.
Joshi
,
S.
Raman
, and
A. C. T.
Van Duin
,
J. Phys. Chem. Lett.
4
,
3792
(
2013
).
49.
K. M.
Bal
and
E. C.
Neyts
,
Chem. Sci.
7
,
5280
(
2016
).
50.
K.
Ganeshan
,
M. J.
Hossain
, and
A. C. T.
van Duin
,
Mol. Simul.
45
,
1265
(
2019
).
51.
Jaguar version 9.4 (Schrödinger LLC,
New York, NY
,
2016
).
52.
S. G.
Srinivasan
,
A. C. T.
Van Duin
, and
P.
Ganesh
,
J. Phys. Chem. A
119
,
571
(
2015
).
53.
A. C. T.
Van Duin
,
J. M. A.
Baas
, and
B.
Van De Graaf
,
J. Chem. Soc., Faraday Trans.
90
,
2881
(
1994
).
54.
K.
Leung
,
Phys. Chem. Chem. Phys.
17
,
1637
(
2015
).
55.
E. R.
Logan
,
E. M.
Tonita
,
K. L.
Gering
, and
J. R.
Dahn
,
J. Electrochem. Soc.
165
,
A3350
(
2018
).
56.
S.C.M. ADF2019,
2019
.
57.
H. J. C.
Berendsen
,
J. P. M.
van Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).

Supplementary Material

You do not currently have access to this content.