We present three schemes to go beyond the electric-dipole approximation in x-ray absorption spectroscopy calculations within a four-component relativistic framework. The first is based on the full semi-classical light–matter interaction operator and the two others on a truncated interaction within the Coulomb gauge (velocity representation) and multipolar gauge (length representation). We generalize the derivation of the multipolar gauge to an arbitrary expansion point and show that the potentials corresponding to different expansion points are related by a gauge transformation, provided that the expansion is not truncated. This suggests that the observed gauge-origin dependence in the multipolar gauge is more than just a finite-basis set effect. The simplicity of the relativistic formalism enables arbitrary-order implementations of the truncated interactions, with and without rotational averaging, allowing us to test their convergence behavior numerically by comparison to the full formulation. We confirm the observation that the oscillator strength of the electric-dipole allowed ligand K-edge transition of TiCl4, when calculated to the second order in the wave vector, becomes negative but also show that inclusion of higher-order contributions allows convergence to the result obtained using the full light–matter interaction. However, at higher energies, the slow convergence of such expansions becomes dramatic and renders such approaches at best impractical. When going beyond the electric-dipole approximation, we therefore recommend the use of the full light–matter interaction.

1.
N. E.
Christensen
and
B. O.
Seraphin
,
Phys. Rev. B
4
,
3321
(
1971
).
2.
P.
Romaniello
and
P. L.
de Boeij
,
J. Chem. Phys.
122
,
164303
(
2005
).
3.
K.
Glantschnig
and
C.
Ambrosch-Draxl
,
New J. Phys.
12
,
103048
(
2010
).
4.
F.
Calvo
,
E.
Pahl
,
M.
Wormit
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
52
,
7583
(
2013
).
5.
K. G.
Steenbergen
,
E.
Pahl
, and
P.
Schwerdtfeger
,
J. Phys. Chem. Lett.
8
,
1407
(
2017
).
6.
R.
Ahuja
,
A.
Blomqvist
,
P.
Larsson
,
P.
Pyykkö
, and
P.
Zaleski-Ejgierd
,
Phys. Rev. Lett.
106
,
018301
(
2011
).
7.
M.
Göppert-Mayer
,
Ann. Phys.
401
,
273
(
1931
).
8.
N. H.
List
,
J.
Kauczor
,
T.
Saue
,
H. J. A.
Jensen
, and
P.
Norman
,
J. Chem. Phys.
142
,
244111
(
2015
).
9.
P. V.
Demekhin
,
J. Phys. B: At., Mol. Opt. Phys.
47
,
025602
(
2014
).
10.
T.
Katsouleas
and
W. B.
Mori
,
Phys. Rev. Lett.
70
,
1561
(
1993
).
11.
H. R.
Reiss
,
Prog. Quantum Electron.
16
,
1
(
1992
).
12.
13.
G. R.
Shulman
,
Y.
Yafet
,
P.
Eisenberger
, and
W. E.
Blumberg
,
Proc. Natl. Acad. Sci. U. S. A.
73
,
1384
(
1976
).
14.
G.
Dräger
,
R.
Frahm
,
G.
Materlik
, and
O.
Brümmer
,
Phys. Status Solidi B
146
,
287
(
1988
).
15.
T.
Yamamoto
,
X-Ray Spectrom.
37
,
572
(
2008
).
16.
S. D.
George
,
T.
Petrenko
, and
F.
Neese
,
Inorg. Chim. Acta
361
,
965
(
2008
).
17.
S.
Bernadotte
,
A. J.
Atkins
, and
C. R.
Jacob
,
J. Chem. Phys.
137
,
204106
(
2012
).
18.
L. D.
Barron
and
C. G.
Gray
,
J. Phys. A: Math., Nucl. Gen.
6
,
59
(
1973
).
19.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
20.
P. J.
Lestrange
,
F.
Egidi
, and
X.
Li
,
J. Chem. Phys.
143
,
234103
(
2015
).
21.
L. K.
Sørensen
,
M.
Guo
,
R.
Lindh
, and
M.
Lundberg
,
Mol. Phys.
115
,
174
(
2017
).
22.
L. K.
Sørensen
,
R.
Lindh
, and
M.
Lundberg
,
Chem. Phys. Lett.
683
,
536
(
2017
).
23.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
,
J. Comput. Chem.
33
,
1572
(
2012
).
24.
L. K.
Sørensen
,
E.
Kieri
,
S.
Srivastav
,
M.
Lundberg
, and
R.
Lindh
,
Phys. Rev. A
99
,
013419
(
2019
).
25.
N. H.
List
,
T.
Saue
, and
P.
Norman
,
Mol. Phys.
115
,
63
(
2017
).
26.
M.
Khamesian
,
I. F.
Galván
,
M. G.
Delcey
,
L. K.
Sørensen
, and
R.
Lindh
, (
Elsevier
,
2019
), Vol. 15, pp.
39
76
.
27.
A. P.
Markin
and
I. G.
Kaplan
,
Dokl. Akad. Nauk SSSR
184
,
66
(
1969
) (in Russian), available at http://mi.mathnet.ru/eng/dan/v184/i1/p66.
28.
A. P.
Markin
and
I. G.
Kaplan
,
Sov. Phys. JETP
37
,
216
(
1973
), available at http://www.jetp.ac.ru/cgi-bin/e/index/e/37/2/p216.
29.
G. M.
Seabra
,
I. G.
Kaplan
, and
J. V.
Ortiz
,
J. Chem. Phys.
123
,
114105
(
2005
).
30.
I. E.
Brumboiu
,
O.
Eriksson
, and
P.
Norman
,
J. Chem. Phys.
150
,
044306
(
2019
).
31.
M.-X.
Wang
,
S.-G.
Chen
,
H.
Liang
, and
L.-Y.
Peng
,
Chin. Phys. B
29
,
013302
(
2020
).
32.
DIRAC, a relativistic ab initio electronic structure program, release DIRAC19, written by
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
,
H. J. Aa.
Jensen
, and
R.
Bast
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Heimlich-Paris
,
T.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, available at , see also http://www.diracprogram.org,
2019
.
33.
M.
Gell-Mann
,
Il Nuovo Cimento
4
,
848
(
1956
).
34.
K.
Schwarzschild
,
Gött. Nach., Math.-Phys. Kl.
1903
,
126
, available at http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002499665.
35.
36.
P.
Norman
,
K.
Ruud
, and
T.
Saue
,
Principles and Practices of Molecular Properties: Theory, Modeling and Simulations
(
Wiley
,
Hoboken, NJ
,
2018
).
37.
P.
Atkins
,
Molecular Quantum Mechanics
(
Oxford University Press
,
1996
).
38.
C.
Cohen-Tannoudji
and
D.
Guéty-Odelin
,
Advances in Atomic Physics: An Overview
(
World Scientific
,
2011
), pp.
33
151
.
39.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
, International Series of Monographs on Physics (Oxford, England) (
Clarendon Press
,
Oxford
,
1930
), p.
232
.
40.
G.
Breit
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
553
(
1928
).
42.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
Theor. Chim. Acta
79
,
93
(
1991
).
43.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
44.
D. H.
Kobe
,
Am. J. Phys.
50
,
128
(
1982
).
45.
A. M.
Stewart
,
J. Phys. A: Math. Gen.
32
,
6091
(
1999
).
46.
T.
Saue
, in
Relativistic Electronic Structure Theory. Part 1. Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
). p.
332
.
47.
F.
Bloch
, in
W. Heisenberg und die Physik unserer Zeit
, edited by
F.
Bopp
(
Vieweg & Sohn
,
Braunschweig
,
1961
).
48.
P.
Lazzeretti
,
Theor. Chim. Acta
87
,
59
(
1993
).
49.
W. E.
Brittin
,
W. R.
Smythe
, and
W.
Wyss
,
Am. J. Phys.
50
,
693
(
1982
).
50.
B. -S. K.
Skagerstam
,
Am. J. Phys.
51
,
1148
(
1983
).
51.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Photons et Atomes
(
Savoirs Actuels
,
New York
,
1987
).
52.
J. D.
Jackson
and
L. B.
Okun
,
Rev. Mod. Phys.
73
,
663
(
2001
).
53.
R.
Bast
,
J.
Jusélius
, and
T.
Saue
,
Chem. Phys.
356
,
187
(
2009
).
54.
V. I.
Lebedev
,
USSR Comput. Math. Math. Phys.
15
,
44
(
1975
).
55.
V. I.
Lebedev
,
USSR Comput. Math. Math. Phys.
16
,
10
(
1976
).
56.
V. I.
Lebedev
,
Sib. Math. J.
18
,
99
(
1977
).
57.
V. I.
Lebedev
and
A. L.
Skorokhodov
,
Russ. Acad. Sci. Dokl. Math.
45
,
587
(
1992
), available at https://zbmath.org/?q=an%3A0795.41026.
58.
V. I.
Lebedev
,
Russ. Acad. Sci. Dokl. Math.
50
,
283
(
1995
), available at https://zbmath.org/?q=an%3A0863.41018.
59.
V. I.
Lebedev
and
D. N.
Laikov
,
Dokl. Math.
59
,
477
481
(
1999
), available at https://zbmath.org/?q=an%3A0960.65029, angular quadrature parameters available from http://server.ccl.net/cca/software/SOURCES/FORTRAN/Lebedev-Laikov-Grids/index.shtml.
60.
E. A.
Kearsley
and
J. T.
Fong
,
J. Res. Nat. Bur. Stand. B. Math. Sci.
79B
,
49
(
1975
).
61.
D. L.
Andrews
and
T.
Thirunamachandran
,
J. Chem. Phys.
67
,
5026
(
1977
).
62.
D. L.
Andrews
and
W. A.
Ghoul
,
J. Phys. A: Math. Gen.
14
,
1281
(
1981
).
63.
D. L.
Andrews
and
N. P.
Blake
,
J. Phys. A: Math. Gen.
22
,
49
(
1989
).
64.
D. H.
Friese
,
M. T. P.
Beerepoot
, and
K.
Ruud
,
J. Chem. Phys.
141
,
204103
(
2014
).
65.
J.-H.
Ee
,
D.-W.
Jung
,
U.-R.
Kim
, and
J.
Lee
,
Eur. J. Phys.
38
,
025801
(
2017
).
66.
H.
Weyl
,
The Classical Groups
(
Princeton University Press
,
1939
).
67.
P. G.
Hodge
,
Am. Math. Monthly
68
,
793
(
1961
).
68.
H.
Jeffreys
,
Math. Proc. Cambridge Philos. Soc.
73
,
173
(
1973
), Jeffreys acknowledges previous work by M. Pastori.
69.
G. F.
Smith
,
Tensor
19
,
79
(
1968
).
70.
R. S.
Rivlin
,
J. Ration. Mech. Anal.
4
,
681
(
1955
).
71.
See http://oeis.org/A005043 for information about Motzkin sums.
72.
M.
Stener
,
G.
Fronzoni
, and
M.
de Simone
,
Chem. Phys. Lett.
373
,
115
(
2003
).
73.
C.
South
,
A.
Shee
,
D.
Mukherjee
,
A. K.
Wilson
, and
T.
Saue
,
Phys. Chem. Chem. Phys.
18
,
21010
(
2016
).
74.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
75.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
76.
K. G.
Dyall
,
J. Phys. Chem. A
113
,
12638
(
2009
).
77.
K. G.
Dyall
,
Theor. Chem. Acc.
131
,
1217
(
2012
).
78.
L.
Visscher
,
Theor. Chem. Acc.
98
,
68
(
1997
).
79.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
).
80.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
81.
82.
E.
Van Lenthe
and
E. J.
Baerends
,
J. Comput. Chem.
24
,
1142
(
2003
).
83.
J.-M.
Lévy-Leblond
,
Commun. Math. Phys.
6
,
286
(
1967
).
84.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
85.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
86.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
DeFrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
87.
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
,
J. Chem. Phys.
109
,
1223
(
1998
).
88.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision C.01,
Gaussian, Inc.
Wallingford, CT
,
2016
.
89.
T.
Glaser
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
,
Acc. Chem. Res.
33
,
859
(
2000
).
90.
E. I.
Solomon
,
B.
Hedman
,
K. O.
Hodgson
,
A.
Dey
, and
R. K.
Szilagyi
,
Coord. Chem. Rev.
249
,
97
(
2005
).
91.
S.
DeBeer George
,
P.
Brant
, and
E. I.
Solomon
,
J. Am. Chem. Soc.
127
,
667
(
2005
).
92.
J. A.
Bearden
and
A. F.
Burr
,
Rev. Mod. Phys.
39
,
125
(
1967
).
93.
Mathematica, Version 11.3, Wolfram Research, Inc., Champaign, IL, 2018.
94.
T.
Helgaker
and
P. R.
Taylor
, HERMIT, A Molecular Integral Code,
University of Oslo
,
Oslo, Norway
,
1986
.
95.
R.
Bast
,
H. J. A.
Jensen
, and
T.
Saue
,
Int. J. Quantum Chem.
109
,
2091
(
2009
).
96.
97.
O.
Christiansen
,
P.
Jørgensen
, and
C.
Hättig
,
Int. J. Quantum Chem.
68
,
1
(
1998
).
99.
T.
Saue
and
H. J. A.
Jensen
,
J. Chem. Phys.
118
,
522
(
2003
).
100.
P.
Jørgensen
and
J.
Linderberg
,
Int. J. Quantum Chem.
4
,
587
(
1970
).
101.
P.
Jorgensen
,
Annu. Rev. Phys. Chem.
26
,
359
(
1975
).
102.
M.
Casida
, in
Recent Advances in Density Functional Methods: Part I
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), p.
155
.
103.
D.
Peng
,
W.
Zou
, and
W.
Liu
,
J. Chem. Phys.
123
,
144101
(
2005
).
104.
F.
Wang
,
T.
Ziegler
,
E.
van Lenthe
,
S.
van Gisbergen
, and
E. J.
Baerends
,
J. Chem. Phys.
122
,
204103
(
2005
).
105.
D. H.
Kobe
,
Am. J. Phys.
51
,
105
(
1983
).
106.
D. H.
Kobe
and
R.
Dale Gray
,
Il Nuovo Cimento B
86
,
155
(
1985
).
107.
E. A.
Power
and
T.
Thirunamachandran
,
Phys. Lett. A
87
,
449
(
1982
).
108.
Molecules in Laser Fields
, edited by
A. D.
Bandrauk
(
Marcel Dekker
,
1994
).
109.
V.
Chernyak
and
S.
Mukamel
,
Chem. Phys.
198
,
133
(
1995
).
110.
111.
R.
Anzaki
,
Y.
Shinohara
,
T.
Sato
, and
K. L.
Ishikawa
,
Phys. Rev. A
98
,
063410
(
2018
).
113.
V. A. Fock - Selected Works: Quantum Mechanics and Quantum Field Theory
, edited by
L.
Faddeev
,
L.
Khalfin
, and
I.
Komarov
(
CRC Press
,
2019
).
114.
E. A.
Power
and
S.
Zienau
,
Philos. Trans. R. Soc., A
251
,
427
(
1959
).
115.
P. W.
Atkins
,
R. G.
Woolley
, and
C. A.
Coulson
,
Philos. Trans. R. Soc., A
319
,
549
(
1970
).
116.
R. G.
Woolley
and
C. A.
Coulson
,
Philos. Trans. R. Soc., A
321
,
557
(
1971
).
117.
E.
Rousseau
and
D.
Felbacq
,
Sci. Rep.
7
,
11115
(
2017
).
118.
D. L.
Andrews
,
G. A.
Jones
,
A.
Salam
, and
R. G.
Woolley
,
J. Chem. Phys.
148
,
040901
(
2018
).
119.
M.
Babiker
,
R.
Loudon
, and
G. W.
Series
,
Philos. Trans. R. Soc., A
385
,
439
(
1983
).
120.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists
(
Academic Press
,
Amsterdam
,
2013
).
121.
R. S.
Strichartz
,
A Guide to Distribution Theory and Fourier Transforms
(
CRC Press
,
Boca Raton
,
1993
), pp.
41, 50
.
You do not currently have access to this content.