A hybrid approach able to perform Time Dependent Density Functional Theory (TDDFT) simulations with the same accuracy as that of hybrid exchange-correlation (xc-) functionals but at a fraction of the computational cost is developed, implemented, and validated. The scheme, which we name Hybrid Diagonal Approximation (HDA), consists in employing in the response function a hybrid xc-functional (containing a fraction of the non-local Hartree–Fock exchange) only for the diagonal elements of the omega matrix, while the adiabatic local density approximation is employed for the off-diagonal terms. HDA is especially (but not exclusively) advantageous when using Slater type orbital basis sets and allows one to employ them in a uniquely efficient way, as we demonstrate here by implementing HDA in a local version of the Amsterdam Density Functional code. The new protocol is tested on NH3, C6H6, and the [Au25(SCH3)18] cluster as prototypical cases ranging from small molecules to ligand-protected metal clusters, finding excellent agreement with respect to both full kernel TDDFT simulations and experimental data. Additionally, a specific comparison test between full kernel and HDA is considered at the Casida level on seven other molecular species, which further confirm the accuracy of the approach for all investigated systems. For the [Au25(SCH3)18] cluster, a speedup by a factor of seven is obtained with respect to the full kernel. The HDA, therefore, promises to provide a quantitative description of the optical properties of medium-sized systems (nanoclusters) at an affordable cost, thanks to its computational efficiency, especially in combination with a complex polarization algorithm version of TDDFT.

1.
V.
Barone
,
WIREs Comput. Mol. Sci.
6
,
86
(
2016
).
2.
M. E.
Casida
,
Recent Advances in Density-Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), p.
155
.
3.
A.
Görling
,
H. H.
Heinze
,
S. Ph.
Ruzankin
,
M.
Staufer
, and
N.
Rösch
,
J. Chem. Phys.
110
,
2785
(
1999
).
4.
K.
Yabana
and
G. F.
Bertsch
,
Phys. Rev. B
54
,
4484
(
1996
).
5.
M. A. L.
Marques
,
A.
Castro
,
G. F.
Bertsch
, and
A.
Rubio
,
Comput. Phys. Commun.
151
,
60
(
2003
).
6.
B.
Walker
,
A. M.
Saitta
,
R.
Gebauer
, and
S.
Baroni
,
Phys. Rev. Lett.
96
,
113001
(
2006
).
7.
S.
Grimme
,
J. Chem. Phys.
138
,
244104
(
2013
).
8.
C.
Bannwarth
and
S.
Grimme
,
Comput. Theoret. Chem.
1040-1041
,
45
(
2014
).
9.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
J. S.
Spencer
,
N. M.
Harrison
,
D. J.
Riley
, and
P. D.
Haynes
,
Chem. Phys.
139
,
064104
(
2013
).
10.
S.
Malola
,
L.
Lehtovaara
,
J.
Enkovaara
, and
H.
Häkkinen
,
ACS Nano
7
,
10263
(
2013
).
11.
M.
Noda
,
K.
Ishimura
,
K.
Nobusada
,
K.
Yabana
, and
T.
Boku
,
J. Comput. Phys.
265
,
145
(
2014
).
12.
K.
Iida
,
M.
Noda
,
K.
Ishimura
, and
K.
Nobusada
,
Phys. Chem. A
118
,
11317
(
2014
).
13.
O.
Baseggio
,
G.
Fronzoni
, and
M.
Stener
,
J. Chem. Phys.
143
,
024106
(
2015
).
14.
O.
Baseggio
,
M.
De Vetta
,
G.
Fronzoni
,
M.
Stener
, and
A.
Fortunelli
,
Int. J. Quantum Chem.
116
,
1603
(
2016
).
15.
O.
Baseggio
,
D.
Toffoli
,
G.
Fronzoni
,
M.
Stener
,
L.
Sementa
, and
A.
Fortunelli
,
J. Phys. Chem. C
120
,
24335
(
2016
).
16.
O.
Baseggio
,
M.
De Vetta
,
G.
Fronzoni
,
M.
Stener
,
L.
Sementa
,
A.
Fortunelli
, and
A.
Calzolari
,
J. Phys. Chem. C
120
,
12773
(
2016
).
17.
A. D.
Becke
,
J. Chem. Phys.
140
,
18A301
(
2014
).
18.
N.
Mardirossian
and
M.
Head-Gordon
,
Mol. Phys.
115
,
2315
(
2017
).
19.
A. D.
Becke
,
J.Chem.Phys.
98
,
5648
(
1993
).
20.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
Phys. Chem.
98
,
11623
(
1994
).
21.
A.
Baiardi
,
M.
Mendolicchio
,
V.
Barone
,
G.
Fronzoni
,
G. A.
Cardenas Jimenez
,
M.
Stener
,
C.
Grazioli
,
M.
de Simone
, and
M.
Coreno
,
J. Chem. Phys.
143
,
204102
(
2015
).
22.
M.
Mendolicchio
,
A.
Baiardi
,
G.
Fronzoni
,
M.
Stener
,
C.
Grazioli
,
M.
de Simone
, and
V.
Barone
,
J. Chem. Phys.
151
,
124105
(
2019
).
23.
A.
Savin
, in
Recent Developments and Applications of Modern Density Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Amsterdam
,
1996
), p.
327
.
24.
N. A.
Besley
,
M. J. G.
Peach
, and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
11
,
10350
(
2009
).
25.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
26.
C.
Fonseca Guerra
,
J. G.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
391
(
1998
).
27.
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
E. J.
Baerends
,
Comput. Phys. Commun.
118
,
119
(
1999
).
28.
A.
Fortunelli
and
O.
Salvetti
,
J. Comput. Chem.
12
,
36
(
1991
).
29.
A.
Fortunelli
and
O.
Salvetti
,
Chem. Phys. Lett.
186
,
372
(
1991
).
30.
E. K. U.
Gross
and
W.
Kohn
,
Adv. Quantum Chem.
21
,
255
(
1990
).
31.
G. R.
Burton
,
W. F.
Chan
,
G.
Cooper
, and
C. E.
Brion
,
Chem. Phys.
177
,
217
(
1993
).
32.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
33.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
34.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
35.
R.
Feng
,
G.
Cooper
, and
C. E.
Brion
,
J. Electr. Spectrosc., Relat. Phenom.
123
,
199
(
2002
).
36.
M. W.
Heaven
,
A.
Dass
,
P. S.
White
,
K. M.
Holt
, and
R. W.
Murray
,
J. Am. Chem. Soc.
130
,
3754
(
2008
).
37.
M.
Zhu
,
C. M.
Aikens
,
F. J.
Hollander
,
G. C.
Schatz
, and
R.
Jin
,
J. Am. Chem. Soc.
130
,
5883
(
2008
).
38.
O.
Baseggio
,
M.
De Vetta
,
G.
Fronzoni
,
D.
Toffoli
,
M.
Stener
,
L.
Sementa
, and
A.
Fortunelli
,
Int. J. Quantum Chem.
118
,
e25769
(
2018
).
39.
L.
Goerigk
,
J.
Moellmann
, and
S.
Grimme
,
Phys.Chem. Chem. Phys.
11
,
4611
(
2009
).
40.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
41.
N. V.
Karimova
and
C. M.
Aikens
,
J. Phys. Chem. A
119
,
8163
(
2015
).
42.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
You do not currently have access to this content.