The eT program is an open source electronic structure package with emphasis on coupled cluster and multilevel methods. It includes efficient spin adapted implementations of ground and excited singlet states, as well as equation of motion oscillator strengths, for CCS, CC2, CCSD, and CC3. Furthermore, eT provides unique capabilities such as multilevel Hartree–Fock and multilevel CC2, real-time propagation for CCS and CCSD, and efficient CC3 oscillator strengths. With a coupled cluster code based on an efficient Cholesky decomposition algorithm for the electronic repulsion integrals, eT has similar advantages as codes using density fitting, but with strict error control. Here, we present the main features of the program and demonstrate its performance through example calculations. Because of its availability, performance, and unique capabilities, we expect eT to become a valuable resource to the electronic structure community.

1.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2014
).
2.
J.
Stanton
,
J.
Gauss
,
M.
Harding
,
P.
Szalay
,
A.
Auer
,
R.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D.
Bernholdt
,
Y.
Bomble
, et al, “
CFOUR, coupled-cluster techniques for computational chemistry, a quantum-chemical program package
,” current version available at http://www.cfour.de,
2010
.
3.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenaes
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. A.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjaergaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnaes
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2014
).
4.
M. S.
Gordon
and
M. W.
Schmidt
, “
Advances in electronic structure theory: GAMESS a decade later
,” in
Theory and Applications of Computational Chemistry
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), Chap. 41, pp.
1167
1189
.
5.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
6.
F.
Aquilante
,
J.
Autschbach
,
R. K.
Carlson
,
L. F.
Chibotaru
,
M. G.
Delcey
,
L.
De Vico
,
I.
Fdez. Galván
,
N.
Ferré
,
L. M.
Frutos
,
L.
Gagliardi
,
M.
Garavelli
,
A.
Giussani
,
C. E.
Hoyer
,
G.
Li Manni
,
H.
Lischka
,
D.
Ma
,
P. Å.
Malmqvist
,
T.
Müller
,
A.
Nenov
,
M.
Olivucci
,
T. B.
Pedersen
,
D.
Peng
,
F.
Plasser
,
B.
Pritchard
,
M.
Reiher
,
I.
Rivalta
,
I.
Schapiro
,
J.
Segarra-Martí
,
M.
Stenrup
,
D. G.
Truhlar
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
V. P.
Vysotskiy
,
O.
Weingart
,
F.
Zapata
, and
R.
Lindh
, “
MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table
,”
J. Comput. Chem.
37
,
506
541
(
2016
).
7.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
MOLPRO: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
8.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).
9.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
10.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theor. Comput.
13
,
3185
3197
(
2017
).
11.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
 III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
12.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
100
(
2014
).
13.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
, “
Recent advances in wave function-based methods of molecular-property calculations
,”
Chem. Rev.
112
,
543
631
(
2012
).
14.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
,
T.
Helgaker
,
G. E.
Scuseria
, and
H. F.
Schaefer
, “
Coupled cluster energy derivatives. Analytic hessian for the closed-shell coupled cluster singles and doubles wave function: Theory and applications
,”
J. Chem. Phys.
92
,
4924
4940
(
1990
).
15.
J. F.
Stanton
, “
Many-body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation-of-motion coupled-cluster method
,”
J. Chem. Phys.
99
,
8840
8847
(
1993
).
16.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
17.
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to Fock space
,”
Ann. Rev. Phys. Chem.
59
,
433
462
(
2008
).
18.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
705
(
1977
).
19.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
9484
(
2003
).
20.
F.
Coester
and
H.
Kümmel
, “
Short-range correlations in nuclear wave functions
,”
Nucl. Phys.
17
,
477
485
(
1960
).
21.
S. D.
Folkestad
,
E. F.
Kjønstad
, and
H.
Koch
, “
An efficient algorithm for Cholesky decomposition of electron repulsion integrals
,”
J. Chem. Phys.
150
,
194112
(
2019
).
22.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. M.
Sanchez de Merás
, and
T.
Helgaker
, “
The CC3 model: An iterative coupled cluster approach including connected triples
,”
J. Chem. Phys.
106
,
1808
1818
(
1997
).
23.
R. H.
Myhre
and
H.
Koch
, “
The multilevel CC3 coupled cluster model
,”
J. Chem. Phys.
145
,
044111
(
2016
).
24.
S.
Sæther
,
T.
Kjærgaard
,
H.
Koch
, and
I.-M.
Høyvik
, “
Density-based multilevel Hartree–Fock model
,”
J. Chem. Theor. Comput.
13
,
5282
5290
(
2017
).
25.
R. H.
Myhre
,
A. M. J.
Sánchez de Merás
, and
H.
Koch
, “
Multi-level coupled cluster theory
,”
J. Chem. Phys.
141
,
224105
(
2014
).
26.
S. D.
Folkestad
and
H.
Koch
, “
The multilevel CC2 and CCSD methods with correlated natural transition orbitals
,”
J. Chem. Theor. Comput.
16
,
179
189
(
2019
).
27.
A.
Warshel
and
M.
Karplus
, “
Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization
,”
J. Am. Chem. Soc.
94
,
5612
5625
(
1972
).
28.
M.
Levitt
and
A.
Warshel
, “
Computer simulation of protein folding
,”
Nature
253
,
694
698
(
1975
).
29.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
, “
Quantum mechanical continuum solvation models
,”
Chem. Rev.
105
,
2999
3094
(
2005
).
30.
B.
Mennucci
, “
Polarizable continuum model
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
386
404
(
2012
).
31.
E.
Valeev
, “
Libint: A library for the evaluation of molecular integrals of many-body operators over Gaussian functions, Version 2.7.0
” (
2017
), available at http://libint.valeyev.net/.
32.
R.
Di Remigio
,
A. H.
Steindal
,
K.
Mozgawa
,
V.
Weijo
,
H.
Cao
, and
L.
Frediani
, “
PCMSolver: An open-source library for solvation modeling
,”
Int. J. Quantum Chem.
119
,
e25685
(
2019
).
33.
R.
Bast
(
2018
). “
Runtest
,” Zenodo.
34.
R.
Bast
,
R.
Di Remigio
, and
J.
Juselius
(
2020
). “
Autocmake
,” Zenodo.
35.
See https://www.openmp.org/spec-html/5.0/openmp.html for technical specifications for OMP.
36.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
37.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
1918
(
1982
).
38.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
39.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
,
87
94
(
1975
).
40.
P.
Pulay
, “
Improved SCF convergence acceleration
,”
J. Comput. Chem.
3
,
556
560
(
1982
).
41.
P.
Pulay
, “
Convergence acceleration of iterative sequences. the case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
42.
G. E.
Scuseria
,
T. J.
Lee
, and
H. F.
Schaefer
, “
Accelerating the convergence of the coupled-cluster approach: The use of the DIIS method
,”
Chem. Phys. Lett.
130
,
236
239
(
1986
).
43.
C.
Hättig
and
F.
Weigend
, “
CC2 excitation energy calculations on large molecules using the resolution of the identity approximation
,”
J. Chem. Phys.
113
,
5154
5161
(
2000
).
44.
M.
Ziółkowski
,
V.
Weijo
,
P.
Jørgensen
, and
J.
Olsen
, “
An efficient algorithm for solving nonlinear equations with a minimal number of trial vectors: Applications to atomic-orbital based coupled-cluster theory
,”
J. Chem. Phys.
128
,
204105
(
2008
).
45.
P.
Ettenhuber
and
P.
Jørgensen
, “
Discarding information from previous iterations in an optimal way to solve the coupled cluster amplitude equations
,”
J. Chem. Theor. Comput.
11
,
1518
1524
(
2015
).
46.
C.
Lanczos
,
An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators
(
United States Government Press Office
,
Los Angeles, CA
,
1950
).
47.
S.
Coriani
,
T.
Fransson
,
O.
Christiansen
, and
P.
Norman
, “
Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled-cluster linear response theory
,”
J. Chem. Theor. Comput.
8
,
1616
1628
(
2012
).
48.
H.
Koch
and
P.
Jørgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
,
3333
3344
(
1990
).
49.
T. B.
Pedersen
and
S.
Kvaal
, “
Symplectic integration and physical interpretation of time-dependent coupled-cluster theory
,”
J. Chem. Phys.
150
,
144106
(
2019
).
50.
P. N.
Swarztrauber
, “
FFT algorithms for vector computers
,”
Parallel Comput.
1
,
45
63
(
1984
).
51.
F.
Aquilante
,
L.
Boman
,
J.
Boström
,
H.
Koch
,
R.
Lindh
,
A. S.
de Merás
, and
T. B.
Pedersen
, “
Cholesky decomposition techniques in electronic structure theory
,” in
Linear-Scaling Techniques in Computational Chemistry and Physics
(
Springer
,
2011
), pp.
301
343
.
52.
J. H.
Van Lenthe
,
R.
Zwaans
,
H. J. J.
Van Dam
, and
M. F.
Guest
, “
Starting SCF calculations by superposition of atomic densities
,”
J. Comput. Chem.
27
,
926
932
(
2006
).
53.
A. M. J.
Sánchez de Merás
,
H.
Koch
,
I. G.
Cuesta
, and
L.
Boman
, “
Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations
,”
J. Chem. Phys.
132
,
204105
(
2010
).
54.
P.
Pulay
, “
Localizability of dynamic electron correlation
,”
Chem. Phys. Lett.
100
,
151
154
(
1983
).
55.
S.
Saebø
and
P.
Pulay
, “
Local treatment of electron correlation
,”
Ann. Rev. Phys. Chem.
44
,
213
236
(
1993
).
56.
P.-O.
Löwdin
, “
On the nonorthogonality problem
,” in
Advances in Quantum Chemistry
(
Elsevier
,
1970
), Vol. 5, pp.
185
199
.
57.
I.-M.
Høyvik
, “
Convergence acceleration for the multilevel Hartree–Fock model
,”
Mol. Phys.
118
,
1626929
(
2020
).
58.
R. H.
Myhre
,
A. M. J.
Sánches de Merás
, and
H.
Koch
, “
The extended CC2 model ECC2
,”
Mol. Phys.
111
,
1109
1118
(
2013
).
59.
I.-M.
Høyvik
,
R. H.
Myhre
, and
H.
Koch
, “
Correlated natural transition orbitals for core excitation energies in multilevel coupled cluster models
,”
J. Chem. Phys.
146
,
144109
(
2017
).
60.
P.
Baudin
and
K.
Kristensen
, “
Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx)
,”
J. Chem. Phys.
146
,
214114
(
2017
).
61.
H. M.
Senn
and
W.
Thiel
, “
QM/MM methods for biomolecular systems
,”
Angew. Chem., Int. Ed.
48
,
1198
1229
(
2009
).
62.
C.
Cappelli
, “
Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute-solvent systems
,”
Int. J. Quantum Chem.
116
,
1532
1542
(
2016
).
63.
F.
Lipparini
,
C.
Cappelli
, and
V.
Barone
, “
Linear response theory and electronic transition energies for a fully polarizable QM/classical Hamiltonian
,”
J. Chem. Theory Comput.
8
,
4153
4165
(
2012
).
64.
R.
Di Remigio
,
T.
Giovannini
,
M.
Ambrosetti
,
C.
Cappelli
, and
L.
Frediani
, “
Fully polarizable QM/fluctuating charge approach to two-photon absorption of aqueous solutions
,”
J. Chem. Theory Comput.
15
,
4056
4068
(
2019
).
65.
M.
Caricato
, “
Coupled cluster theory with the polarizable continuum model of solvation
,”
Int. J. Quantum Chem.
119
,
e25710
(
2019
).
66.
R.
Cammi
, “
Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives
,”
J. Chem. Phys.
131
,
164104
(
2009
).
67.
M.
Caricato
, “
Absorption and emission spectra of solvated molecules with the EOM–CCSD–PCM method
,”
J. Chem. Theory Comput.
8
,
4494
4502
(
2012
).
68.
M.
Caricato
,
F.
Lipparini
,
G.
Scalmani
,
C.
Cappelli
, and
V.
Barone
, “
Vertical electronic excitations in solution with the EOM–CCSD method combined with a polarizable explicit/implicit solvent model
,”
J. Chem. Theory Comput.
9
,
3035
3042
(
2013
).
69.
S.
Ren
,
F.
Lipparini
,
B.
Mennucci
, and
M.
Caricato
, “
Coupled cluster theory with induced dipole polarizable embedding for ground and excited states
,”
J. Chem. Theory Comput.
15
,
4485
4496
(
2019
).
70.
L. S.
Cederbaum
,
W.
Domcke
, and
J.
Schirmer
, “
Many-body theory of core holes
,”
Phys. Rev. A
22
,
206
222
(
1980
).
71.
S.
Coriani
and
H.
Koch
, “
Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework
,”
J. Chem. Phys.
143
,
181103
(
2015
).
72.
S.
Coriani
and
H.
Koch
, “
Erratum: “Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework” [J. Chem. Phys. 143, 181103 (2015)]
,”
J. Chem. Phys.
145
,
149901
(
2016
).
73.
J. H.
Andersen
,
A.
Balbi
,
S.
Coriani
,
S. D.
Folkestad
,
T.
Giovannini
,
L.
Goletto
,
T. S.
Haugland
,
A.
Hutcheson
,
I.-M.
Høyvik
,
E. F.
Kjønstad
,
T.
Moitra
,
R. H.
Myhre
,
A. C.
Paul
,
M.
Scavino
,
A. S.
Skeidsvoll
,
Å. H.
Tveten
, and
H.
Koch
(
2020
). “
Geometries eT 1.0 paper
,” Zenodo.
74.
O.
Christiansen
,
H.
Koch
,
P.
Jørgensen
, and
J.
Olsen
, “
Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory
,”
Chem. Phys. Lett.
256
,
185
194
(
1996
).
75.
D.
Kánnár
and
P. G.
Szalay
, “
Benchmarking coupled cluster methods on valence singlet excited states
,”
J. Chem. Theor. Comput.
10
,
3757
3765
(
2014
).
76.
D.
Kánnár
,
A.
Tajti
, and
P. G.
Szalay
, “
Accuracy of coupled cluster excitation energies in diffuse basis sets
,”
J. Chem. Theor. Comput.
13
,
202
209
(
2016
).
80.
K.
Hald
,
P.
Jørgensen
,
O.
Christiansen
, and
H.
Koch
, “
Implementation of electronic ground states and singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections
,”
J. Chem. Phys.
116
,
5963
5970
(
2002
).
81.
S.
Li
,
W.
Li
, and
T.
Fang
, “
An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules
,”
J. Am. Chem. Soc.
127
,
7215
7226
(
2005
).
82.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
, “
UCSF Chimera–A visualization system for exploratory research and analysis
,”
J. Comput. Chem.
25
,
1605
1612
(
2004
).
83.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
, “
Dynamical fluctuating charge force fields: Application to liquid water
,”
J. Chem. Phys.
101
,
6141
6156
(
1994
).
84.
T.
Giovannini
,
P.
Lafiosca
,
B.
Chandramouli
,
V.
Barone
, and
C.
Cappelli
, “
Effective yet reliable computation of hyperfine coupling constants in solution by a QM/MM approach: Interplay between electrostatics and non-electrostatic effects
,”
J. Chem. Phys.
150
,
124102
(
2019
).
85.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF: A full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
86.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
451
(
1964
).
87.
S. A.
Kovalenko
,
R.
Schanz
,
V. M.
Farztdinov
,
H.
Hennig
, and
N. P.
Ernsting
, “
Femtosecond relaxation of photoexcited para-nitroaniline: Solvation, charge transfer, internal conversion and cooling
,”
Chem. Phys. Lett.
323
,
312
322
(
2000
).
88.
T.
Giovannini
,
R. R.
Riso
,
M.
Ambrosetti
,
A.
Puglisi
, and
C.
Cappelli
, “
Electronic transitions for a fully QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes
,”
J. Chem. Phys.
151
,
174104
(
2019
).
89.
T.
Giovannini
,
A.
Puglisi
,
M.
Ambrosetti
, and
C.
Cappelli
, “
Polarizable QM/MM approach with fluctuating charges and fluctuating dipoles: The QM/FQFμ model
,”
J. Chem. Theory Comput.
15
,
2233
2245
(
2019
).
90.
J.
Olsen
,
P.
Jørgensen
,
H.
Koch
,
A.
Balkova
, and
R. J.
Bartlett
, “
Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions
,”
J. Chem. Phys.
104
,
8007
8015
(
1996
).
91.
S. D.
Folkestad
,
E. F.
Kjønstad
,
R. H.
Myhre
,
J. H.
Andersen
,
A.
Balbi
,
S.
Coriani
,
T.
Giovannini
,
L.
Goletto
,
T. S.
Haugland
,
A.
Hutcheson
,
I.-M.
Høyvik
,
T.
Moitra
,
A. C.
Paul
,
M.
Scavino
,
A. S.
Skeidsvoll
,
Å. H.
Tveten
, and
H.
Koch
, Gitlab,
2020
, https://gitlab.com/eT-program/eT.

Supplementary Material

You do not currently have access to this content.