The usual view of exciton–exciton annihilation (EEA) processes in molecular aggregates is based on locally excited states of the monomer units. However, the corresponding localized configurations can only be assumed if the system is in a coherent superposition of eigenstates, i.e., a wave packet. We study a molecular dimer and focus on the characterization of EEA by a wave packet motion induced in the system by ultrashort pulse excitation. Here, coherences that appear are destroyed by dissipation processes. We discuss the influence of interband and intraband relaxation on the dynamics. The states that participate in the annihilation process are directly accessible by fifth-order optical two-dimensional spectroscopy. Such spectra are calculated, and spectral features are related to the annihilation process.

1.
Y.
Zaushitsyn
,
K. G.
Jespersen
,
L.
Valkunas
,
V.
Sundström
, and
A.
Yartsev
,
Phys. Rev. B
75
,
195201
(
2007
).
2.
D. C.
Dai
and
A. P.
Monkman
,
Phys. Rev. B
87
,
045308
(
2013
).
3.
M. A.
Stevens
,
C.
Silva
,
D. M.
Russell
, and
R. H.
Friend
,
Phys. Rev. B
63
,
165213
(
2001
).
4.
S.
Cook
,
H.
Liyuan
,
A.
Furube
, and
R.
Katoh
,
J. Phys. Chem. C
114
,
10962
(
2010
).
5.
A.
Lewis
,
A.
Ruseckas
,
O.
Gaudin
,
G.
Webster
,
P.
Burn
, and
I.
Samuel
,
Org. Electron.
7
,
452
(
2006
).
6.
D.
Peckus
,
A.
Devižis
,
D.
Hertel
,
K.
Meerholz
, and
V.
Gulbinas
,
Chem. Phys.
404
,
42
(
2012
).
7.
S.
Gòlinas
,
J.
Kirkpatrick
,
I. A.
Howard
,
K.
Johnson
,
M. W. B.
Wilson
,
G.
Pace
,
R. H.
Friend
, and
C.
Silva
,
J. Phys. Chem. B
117
,
4649
(
2013
).
8.
R. S.
Knox
, “
Theory of excitons, solid state physics
,” in
Advances in Research and Applications
(
Academic Press
,
New York
,
1963
), Vol. 5.
9.
A. S.
Davydov
,
Theory of Molecular Excitons
(
Plenum
,
New York
,
1971
).
10.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley VCH
,
Weinheim
,
2011
).
11.
J.
Frenkel
,
Phys. Rev.
37
,
17
(
1931
).
12.
M.
Kasha
,
Rev. Mod. Phys.
31
,
162
(
1959
).
13.
The Physics and Chemistry of Wave Packets
, edited by
J.
Yeazell
and
T.
Uzer
(
Wiley
,
New York
,
2000
).
14.
B. M.
Garraway
and
K.-A.
Suominen
,
Rep. Prog. Phys.
58
,
365
(
1995
).
15.
J.
Manz
, in
Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution
, edited by
V.
Sundström
(
Imperial College Press
,
London
,
1996
), pp.
80
319
.
17.
H.
Marciniak
,
X.-Q.
Li
,
F.
Würthner
, and
S.
Lochbrunner
,
J. Phys. Chem. A
115
,
648
(
2011
).
18.
S.
Wolter
,
J.
Aizezers
,
F.
Fennel
,
M.
Seidel
,
F.
Würthner
,
O.
Kühn
, and
S.
Lochbrunner
,
New J. Phys.
14
,
105027
(
2012
).
19.
F.
Fennel
and
S.
Lochbrunner
,
Phys. Rev. B
92
,
140301
(
2015
).
20.
S. F.
Völker
,
A.
Schmiedel
,
M.
Holzapfel
,
K.
Renziehausen
,
V.
Engel
, and
C.
Lambert
,
J. Phys. Chem. C
118
,
17467
(
2014
).
21.
K.
Hader
,
V.
May
,
C.
Lambert
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
18
,
13368
(
2016
).
22.
K.
Hader
,
C.
Consani
,
T.
Brixner
, and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
31989
(
2017
).
23.
J.
Dostál
,
F.
Fennel
,
F.
Koch
,
S.
Herbst
,
F.
Würthner
, and
T.
Brixner
,
Nat. Commun.
9
,
2466
(
2018
).
24.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M. G.
Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
(
1998
).
25.
D. M.
Jonas
,
Ann. Rev. Phys. Chem.
54
,
425
(
2003
).
26.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
,
Science
300
,
1553
(
2003
).
27.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
28.
T.
Brixner
,
T.
Mančal
,
I.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
,
4221
(
2004
).
29.
T.
Brixner
,
J.
Stenger
,
H. M.
Vaswani
,
M.
Cho
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
434
,
625
(
2005
).
30.
F. D.
Fuller
and
J. P.
Ogilvie
,
Ann. Rev. Phys. Chem.
66
,
667
(
2015
).
31.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
,
Angew. Chem., Int. Ed.
54
,
11368
(
2015
).
32.
B.
Brueggemann
and
T.
Pullerits
,
New J. Phys.
13
,
025024
(
2011
).
33.
J.
Süß
,
J.
Wehner
,
J.
Dostál
,
T.
Brixner
, and
V.
Engel
,
J. Chem. Phys.
150
,
104304
(
2019
).
34.
M.
Kasha
,
Radiat. Res.
20
,
55
(
1963
).
35.
M.
Kasha
,
H. R.
Rawls
, and
M. A.
El-Bayoumi
,
Pure Appl. Chem.
11
,
371
(
1965
).
36.
M.
Schröter
,
S.
Ivanov
,
J.
Schulze
,
S.
Polyutov
,
Y.
Yani
,
T.
Pullerits
, and
O.
Kühn
,
Phys. Rep.
567
,
1
(
2015
).
37.
B.
Engels
and
V.
Engel
,
Phys. Chem. Chem. Phys.
19
,
12604
(
2017
).
38.
T.
Renger
and
V.
May
,
Phys. Rev. Lett.
78
,
3406
(
1997
).
39.
B.
Brüggemann
,
J. L.
Herek
,
V.
Sundström
,
T.
Pullerits
, and
V.
May
,
J. Phys. Chem. B
105
,
11391
(
2001
).
40.
V.
May
,
J. Chem. Phys.
140
,
054103
(
2014
).
41.
K.
Mølmer
,
Y.
Castin
, and
J.
Dalibard
,
J. Opt. Soc. Am. B
10
,
524
(
1993
).
42.
D. E.
Makarov
and
H.
Metiu
,
J. Chem. Phys.
111
,
10126
(
1999
).
43.
P.
Saalfrank
,
Chem. Phys.
211
,
265
(
1996
).
44.
B.
Wolfseder
and
W.
Domcke
,
Chem. Phys. Lett.
235
,
370
(
1995
).
45.
F.
Glaab
and
V.
Engel
,
J. Phys. Chem. A
123
,
5463
(
2019
).
46.
J.
Albert
,
M.
Falge
,
M.
Keß
,
J.
Wehner
,
P.
Zhang
,
A.
Eisfeld
, and
V.
Engel
,
J. Chem. Phys.
142
,
212440
(
2015
).
47.
M.
Keß
and
V.
Engel
,
Chem. Phys. Lett.
650
,
41
(
2016
).
48.
M.
Kasha
,
Faraday Discuss. Chem. Soc.
9
,
14
(
1950
).
49.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito
,
2007
).
50.
P.
Kjellberg
,
B.
Brüggemann
, and
T.
Pullerits
,
Phys. Rev. B
74
,
024303
(
2006
).
51.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
52.
S.
Mukamel
,
Ann. Rev. Phys. Chem.
51
,
691
(
2000
).
53.
J.
Wehner
,
A.
Schubert
, and
V.
Engel
,
Chem. Phys. Lett.
541
,
49
(
2012
).
54.
C.
Brüning
,
J.
Wehner
,
J.
Hausner
,
M.
Wenzel
, and
V.
Engel
,
Struct. Dyn.
3
,
043201
(
2016
).
55.
F. C.
Spano
and
C.
Silva
,
Ann. Rev. Phys. Chem.
65
,
477
(
2014
).
56.
R.
Tempelaar
,
T. L. C.
Jansen
, and
J.
Knoester
,
J. Phys. Chem. Lett.
8
,
6113
(
2017
).
You do not currently have access to this content.