We have performed trajectory surface hopping dynamics for cis,cis-1,3-cyclooctadiene to investigate the photochemical pathways involved after being excited to the S1 state. Our calculations reveal ultrafast decay to the ground state, facilitated by conical intersections involving distortions around the double bonds. The main distortions are localized on one double bond, involving twisting and pyramidalization of one of the carbons of that double bond (similar to ethylene), while a limited number of trajectories decay via delocalized (non-local) twisting of both double bonds. The interplay between local and non-local distortions is important in our understanding of photoisomerization in conjugated systems. The calculations show that a broad range of the conical intersection seam space is accessed during the non-adiabatic events. Several products formed on the ground state have also been observed.

1.
S.
Gozem
,
H. L.
Luk
,
I.
Schapiro
, and
M.
Olivucci
, “
Theory and simulation of the ultrafast double-bond isomerization of biological chromophores
,”
Chem. Rev.
117
,
13502
13565
(
2017
).
2.
C.
Dugave
and
L.
Demange
, “
Cis-trans isomerization of organic molecules and biomolecules: Implications and applications
,”
Chem. Rev.
103
,
2475
2532
(
2003
).
3.
M. A.
van der Horst
and
K. J.
Hellingwerf
, “
Photoreceptor proteins, “star actors of modern times”: A review of the functional dynamics in the structure of representative members of six different photoreceptor families
,”
Acc. Chem. Res.
37
,
13
20
(
2004
).
4.
M.
Barbatti
,
J.
Paier
, and
H.
Lischka
, “
Photochemistry of ethylene: A multireference configuration interaction investigation of the excited-state energy surfaces
,”
J. Chem. Phys.
121
,
11614
11624
(
2004
).
5.
B. R.
Brooks
and
H. F.
Schaefer
, “
Sudden polarization: Pyramidalization of twisted ethylene
,”
J. Am. Chem. Soc.
101
,
307
311
(
1979
).
6.
H.
Tao
,
B. G.
Levine
, and
T. J.
Martínez
, “
Ab initio multiple spawning dynamics using multi-state second-order perturbation theory
,”
J. Phys. Chem. A
113
,
13656
13662
(
2009
).
7.
B. G.
Levine
and
T. J.
Martínez
, “
Isomerization through conical intersections
,”
Annu. Rev. Phys. Chem.
58
,
613
634
(
2007
).
8.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martinez
, “
Role of Rydberg states in the photochemical dynamics of ethylene
,”
J. Phys. Chem. A
116
,
2808
2818
(
2012
).
9.
S. P.
Neville
,
M.
Chergui
,
A.
Stolow
, and
M. S.
Schuurman
, “
Ultrafast x-ray spectroscopy of conical intersections
,”
Phys. Rev. Lett.
120
,
243001
(
2018
).
10.
P.
Celani
,
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
, “
Excited-state reaction pathways for s-cis buta-1,3-diene
,”
J. Chem. Phys.
102
,
5733
5742
(
1995
).
11.
M.
Olivucci
,
I. N.
Ragazos
,
F.
Bernardi
, and
M. A.
Robb
, “
A conical intersection mechanism for the photochemistry of butadiene. A MC-SCF study
,”
J. Am. Chem. Soc.
115
,
3710
3721
(
1993
).
12.
M.
Ito
and
I.
Ohmine
, “
Nonadiabatic transition and energy relaxation dynamics in the photoisomerization of s-trans butadiene
,”
J. Chem. Phys.
106
,
3159
3173
(
1997
).
13.
C.
Nonnenberg
,
S.
Grimm
, and
I.
Frank
, “
Restricted open-shell Kohn–Sham theory for π − π* transitions. II. Simulation of photochemical reactions
,”
J. Chem. Phys.
119
,
11585
11590
(
2003
).
14.
Y.
Dou
,
B. R.
Torralva
, and
R. E.
Allen
, “
Detailed mechanism for trans-cis photoisomerization of butadiene following a femtosecond-scale laser pulse
,”
J. Phys. Chem. A
107
,
8817
8824
(
2003
).
15.
B. G.
Levine
and
T. J.
Martínez
, “
Ab initio multiple spawning dynamics of excited butadiene: Role of charge transfer
,”
J. Phys. Chem. A
113
,
12815
12824
(
2009
).
16.
W. J.
Glover
,
T.
Mori
,
M. S.
Schuurman
,
A. E.
Boguslavskiy
,
O.
Schalk
,
A.
Stolow
, and
T. J.
Martínez
, “
Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations
,”
J. Chem. Phys.
148
,
164303
(
2018
).
17.
A. E.
Boguslavskiy
,
O.
Schalk
,
N.
Gador
,
W. J.
Glover
,
T.
Mori
,
T.
Schultz
,
M. S.
Schuurman
,
T. J.
Martínez
, and
A.
Stolow
, “
Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy
,”
J. Chem. Phys.
148
,
164302
(
2018
).
18.
P.
Celani
,
S.
Ottani
,
M.
Olivucci
,
F.
Bernardi
, and
M. A.
Robb
, “
What happens during the picosecond lifetime of 2A1 cyclohexa-1,3-diene? A CAS-SCF study of the cyclohexadiene/hexatriene photochemical interconversion
,”
J. Am. Chem. Soc.
116
,
10141
10151
(
1994
).
19.
P.
Celani
,
F.
Bernardi
,
M. A.
Robb
, and
M.
Olivucci
, “
Do photochemical ring-openings occur in the spectroscopic state? 1B2 pathways for the cyclohexadiene/hexatriene photochemical interconversion
,”
J. Phys. Chem.
100
,
19364
19366
(
1996
).
20.
M.
Garavelli
,
P.
Celani
,
M.
Fato
,
M. J.
Bearpark
,
B. R.
Smith
,
M.
Olivucci
, and
M. A.
Robb
, “
Relaxation paths from a conical intersection: The mechanism of product formation in the cyclohexadiene/hexatriene photochemical interconversion
,”
J. Phys. Chem. A
101
,
2023
2032
(
1997
).
21.
J.
Kim
,
H.
Tao
,
J. L.
White
,
V. S.
Petrović
,
T. J.
Martinez
, and
P. H.
Bucksbaum
, “
Control of 1,3-cyclohexadiene photoisomerization using light-induced conical intersections
,”
J. Phys. Chem. A
116
,
2758
2763
(
2012
).
22.
K.
Kosma
,
S. A.
Trushin
,
W.
Fuß
, and
W. E.
Schmid
, “
Cyclohexadiene ring opening observed with 13 fs resolution: Coherent oscillations confirm the reaction path
,”
Phys. Chem. Chem. Phys.
11
,
172
181
(
2009
).
23.
S.
Deb
and
P. M.
Weber
, “
The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: The case of 1,3-cyclohexadiene
,”
Annu. Rev. Phys. Chem.
62
,
19
39
(
2011
).
24.
S. L.
Horton
,
Y.
Liu
,
P.
Chakraborty
,
S.
Matsika
, and
T.
Weinacht
, “
Vibrationally assisted below-threshold ionization
,”
Phys. Rev. A
95
,
063413
(
2017
).
25.
K.
Kaneshima
,
Y.
Ninota
, and
T.
Sekikawa
, “
Time-resolved high-harmonic spectroscopy of ultrafast photoisomerization dynamics
,”
Opt. Express
26
,
31039
31054
(
2018
).
26.
I.
Polyak
,
L.
Hutton
,
R.
Crespo-Otero
,
M.
Barbatti
, and
P. J.
Knowles
, “
Ultrafast photoinduced dynamics of 1,3-cyclohexadiene using XMS-CASPT2 surface hopping
,”
J. Chem. Theory Comput.
15
,
3929
3940
(
2019
).
27.
O.
Schalk
,
T.
Geng
,
T.
Thompson
,
N.
Baluyot
,
R. D.
Thomas
,
E.
Tapavicza
, and
T.
Hansson
, “
Cyclohexadiene revisited: A time-resolved photoelectron spectroscopy and ab initio study
,”
J. Phys. Chem. A
120
,
2320
2329
(
2016
).
28.
M.
Tudorovskaya
,
R. S.
Minns
, and
A.
Kirrander
, “
Effects of probe energy and competing pathways on time-resolved photoelectron spectroscopy: The ring-opening of 1,3-cyclohexadiene
,”
Phys. Chem. Chem. Phys.
20
,
17714
17726
(
2018
).
29.
O.
Schalk
,
A. E.
Boguslavskiy
,
A.
Stolow
, and
M. S.
Schuurman
, “
Through-bond interactions and the localization of excited-state dynamics
,”
J. Am. Chem. Soc.
133
,
16451
16458
(
2011
).
30.
W.
Fuß
,
S.
Panja
,
W. E.
Schmid
, and
S. A.
Trushin
, “
Competing ultrafast cis-trans isomerization and ring closure of cyclohepta-1,3-diene and cyclo-octa-1,3-diene
,”
Mol. Phys.
104
,
1133
1143
(
2006
).
31.
K.
Komori-Orisaku
,
Y.
Hirose
, and
I.
Iwakura
, “
Pulsed Nd:YAG laser-induced photoreaction of cis,cis-1,3-cyclooctadiene at 266 nm: Selective cyclization to cis-bicyclo[4.2.0]oct-7-ene
,”
Photochem. Photobiol. Sci.
16
,
146
150
(
2017
).
32.
F.
Bernardi
,
M.
Olivucci
,
I. N.
Ragazos
, and
M. A.
Robb
, “
Origin of the nonstereospecificity in the ring opening of alkyl-substituted cyclobutenes
,”
J. Am. Chem. Soc.
114
,
2752
(
1992
).
33.
Spartan’16, Wavefunction, Inc., Irvine, CA.
34.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
, “
Density functional theory of electronic structure
,”
J. Phys. Chem.
100
,
12974
12980
(
1996
).
35.
T.
Ziegler
, “
Approximate density functional theory as a practical tool in molecular energetics and dynamics
,”
Chem. Rev.
91
,
651
667
(
1991
).
36.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
37.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the colle-salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
38.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
39.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
40.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules
,”
J. Chem. Phys.
54
,
724
728
(
1971
).
41.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
42.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
, “
Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods
,”
Chem. Phys. Lett.
165
,
513
522
(
1990
).
43.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
44.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision B.01,
2009
.
45.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
46.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
47.
A. A.
Granovsky
, “
Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory
,”
J. Chem. Phys.
134
,
214113
(
2011
).
48.
T.
Shiozaki
,
W.
Győrffy
,
P.
Celani
, and
H.-J.
Werner
, “
Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients
,”
J. Chem. Phys.
135
,
081106
(
2011
).
49.
B. O.
Roos
, “
The multiconfigurational (MC) self-consistent field (SCF) theory
,” in
Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry
, edited by
B. O.
Roos
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1992
), pp.
177
254
.
50.
J. W.
Park
, “
Single-state single-reference and multistate multireference zeroth-order Hamiltonians in MS-CASPT2 and conical intersections
,”
J. Chem. Theory Comput.
15
,
3960
3973
(
2019
).
51.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Ahlrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M. J. M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
,
M.
Seth
,
E. A.
Stahlberg
,
J.-G.
Zhao
,
S.
Yabushita
,
Z.
Zhang
,
M.
Barbatti
,
S.
Matsika
,
M.
Schuurmann
,
D. R.
Yarkony
,
S. R.
Brozell
,
E. V.
Beck
,
J.-P.
Blaudeau
,
M.
Ruckenbauer
,
B.
Sellner
,
F.
Plasser
, and
J. J.
Szymczak
, COLUMBUS, an ab initio electronic structure program, release 7.0, 2012.
52.
H.
Lischka
,
T.
Müller
,
P. G.
Szalay
,
I.
Shavitt
,
R. M.
Pitzer
, and
R.
Shepard
, “
Columbus-a program system for advanced multireference theory calculations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
191
199
(
2011
).
53.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
,
I.
Shavitt
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
M.
Seth
,
G. S.
Kedziora
,
S.
Yabushita
, and
Z.
Zhang
, “
High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density
,”
Phys. Chem. Chem. Phys.
3
,
664
673
(
2001
).
54.
BAGEL, Brilliantly Advanced General Electronic-structure Library, https://www.nubakery.org under the GNU General Public License.
55.
T.
Shiozaki
, “
BAGEL: Brilliantly advanced general electronic-structure library
,”
WIREs Comput. Mol. Sci.
8
,
e1331
(
2018
).
56.
M.
Barbatti
,
M.
Ruckenbauer
,
F.
Plasser
,
J.
Pittner
,
G.
Granucci
,
M.
Persico
, and
H.
Lischka
, “
Newton-X: A surface-hopping program for nonadiabatic molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
26
33
(
2014
).
57.
M.
Barbatti
,
G.
Granucci
,
M.
Ruckenbauer
,
F.
Plasser
,
R.
Crespo-Otero
,
J.
Pittner
,
M.
Persico
, and
H.
Lischka
, NEWTON-X: A package for Newtonian dynamics close to the crossing seam, version 2, https://www.newtonx.org.
58.
R.
Shepard
, “
Geometrical energy derivative evaluation with MRCI wave functions
,”
Int. J. Quantum Chem.
31
,
33
44
(
1987
).
59.
R.
Shepard
,
H.
Lischka
,
P. G.
Szalay
,
T.
Kovar
, and
M.
Ernzerhof
, “
A general multireference configuration interaction gradient program
,”
J. Chem. Phys.
96
,
2085
2098
(
1992
).
60.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
, “
Analytic MRCI gradient for excited states: Formalism and application to the n- valence- and n-(3s,3p) Rydberg states of formaldehyde
,”
Mol. Phys.
100
,
1647
1658
(
2002
).
61.
H.
Lischka
,
M.
Dallos
,
P. G.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
, “
Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism
,”
J. Chem. Phys.
120
,
7322
7329
(
2004
).
62.
M.
Dallos
,
H.
Lischka
,
R.
Shepard
,
D. R.
Yarkony
, and
P. G.
Szalay
, “
Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: Formaldehyde and the photodimerization of ethylene
,”
J. Chem. Phys.
120
,
7330
7339
(
2004
).
63.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
64.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific Discovery
,”
Comput. Sci. Eng.
16
,
62
74
(
2014
).
65.
C.
Zhu
,
S.
Nangia
,
A. W.
Jasper
, and
D. G.
Truhlar
, “
Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories
,”
J. Chem. Phys.
121
,
7658
7670
(
2004
).
66.
G.
Granucci
and
M.
Persico
, “
Critical appraisal of the fewest switches algorithm for surface hopping
,”
J. Chem. Phys.
126
,
134114
(
2007
).
67.
A.
Jain
,
E.
Alguire
, and
J. E.
Subotnik
, “
An efficient, augmented surface hopping algorithm that includes decoherence for use in large-scale simulations
,”
J. Chem. Theory Comput.
12
,
5256
5268
(
2016
).
68.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
, “
Understanding the surface hopping view of electronic transitions and decoherence
,”
Annu. Rev. Phys. Chem.
67
,
387
417
(
2016
).
69.
M. F.
Herman
, “
Nonadiabatic semiclassical scattering. I. Analysis of generalized surface hopping procedures
,”
J. Chem. Phys.
81
,
754
763
(
1984
).
70.
D. F.
Coker
and
L.
Xiao
, “
Methods for molecular dynamics with nonadiabatic transitions
,”
J. Chem. Phys.
102
,
496
510
(
1995
).
71.
G.
Käb
, “
Fewest switches adiabatic surface hopping as applied to vibrational energy relaxation
,”
J. Phys. Chem. A
110
,
3197
3215
(
2006
).
72.
A.
Carof
,
S.
Giannini
, and
J.
Blumberger
, “
Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping
,”
J. Chem. Phys.
147
,
214113
(
2017
).
73.
F.
Plasser
,
S.
Mai
,
M.
Fumanal
,
E.
Gindensperger
,
C.
Daniel
, and
L.
González
, “
Strong influence of decoherence corrections and momentum rescaling in surface hopping dynamics of transition metal complexes
,”
J. Chem. Theory Comput.
15
,
5031
5045
(
2019
).
74.
H.
Tao
, “
First principles molecular dynamics and control of photochemical reactions
,” Ph.D. thesis,
Stanford University
,
2011
.
75.
R. R.
Chadwick
,
D. P.
Gerrity
, and
B. S.
Hudson
, “
Resonance Raman spectroscopy of butadiene: Demonstration of a 21Ag state below the 11Bu V state
,”
Chem. Phys. Lett.
115
,
24
(
1985
).
76.
J. E.
Baldwin
and
P. A.
Leber
, “
Molecular rearrangements through thermal [1,3] carbon shifts
,”
Org. Biomol. Chem.
6
,
36
47
(
2008
).

Supplementary Material

You do not currently have access to this content.