The problem of a solute described by Quantum Chemistry within a solvent represented as a polarizable continuum model (PCM) is here reformulated in terms of the open quantum systems (OQS) theory. Using its stochastic Schrödinger equation formulation, we are able to provide a more comprehensive picture of the electronic energies and the coupling between solute and solvent electronic dynamics. In particular, the OQS-PCM proves to be a unifying theoretical framework naturally including polarization and dispersion interactions, the effect of solvent fluctuations, and the non-Markovian solvent response. As such, the OQS-PCM describes the interplay between the solute and the solvent typical electronic dynamical times and yields both the standard PCM and the so-called Born–Oppenheimer solvation regime, where the solvent electronic response is considered faster than any electronic dynamics taking place in the solute. In analyzing the OQS-PCM, we obtained an expression for the solute–solvent dispersion (van der Waals) interactions, which is very transparent in terms of a physical interpretation based on fluctuations and response functions. Finally, we present various numerical tests that support the theoretical findings

1.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
2.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
3.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
4.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
5.
L. W.
Chung
,
W. M. C.
Sameera
,
R.
Ramozzi
,
A. J.
Page
,
M.
Hatanaka
,
G. P.
Petrova
,
T. V.
Harris
,
X.
Li
,
Z.
Ke
,
F.
Liu
,
H.-B.
Li
,
L.
Ding
, and
K.
Morokuma
,
Chem. Rev.
115
,
5678
(
2015
).
6.
C.
Curutchet
,
A.
Muñoz-Losa
,
S.
Monti
,
J.
Kongsted
,
G. D.
Scholes
, and
B.
Mennucci
,
J. Chem. Theory Comput.
5
,
1838
(
2009
).
7.
J. M.
Olsen
,
K.
Aidas
, and
J.
Kongsted
,
J. Chem. Theory Comput.
6
,
3721
(
2010
).
8.
B.
Mennucci
and
S.
Corni
,
Nat. Rev. Chem.
3
,
315
(
2019
).
9.
A.
Klamt
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
699
(
2011
).
10.
C. J.
Cramer
and
D. G.
Truhlar
,
Chem. Rev.
99
,
2161
(
1999
).
11.
R.
Cammi
and
J.
Tomasi
,
J. Comput. Chem.
16
,
1449
(
1995
).
12.
C. A.
Guido
and
S.
Caprasecca
,
Int. J. Quantum Chem.
119
,
e25711
(
2019
).
13.
R.
Cammi
and
J.
Tomasi
,
Int. J. Quantum Chem.
56
,
465
(
1995
).
14.
R.
Cammi
,
Molecular Response Functions for the Polarizable Continuum Model
(
Springer
,
2013
).
15.
S.
Corni
,
S.
Pipolo
, and
R.
Cammi
,
J. Phys. Chem. A
119
,
5405
(
2014
).
16.
R.
Cammi
,
S.
Corni
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
122
,
104513
(
2005
).
17.
S.
Corni
,
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
123
,
134512
(
2005
).
18.
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
96
,
5088
(
1992
).
19.
J. N.
Gehlen
,
D.
Chandler
,
H. J.
Kim
, and
J. T.
Hynes
,
J. Phys. Chem.
96
,
1748
(
1992
).
20.
R. A.
Marcus
,
J. Phys. Chem.
96
,
1753
(
1992
).
21.
M. V.
Basilevsky
,
G. E.
Chudinov
, and
M. D.
Newton
,
Chem. Phys.
179
,
263
(
1994
).
22.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Great Clarendon Street, Oxford
,
2002
).
23.
H.-P.
Breuer
,
B.
Kappler
, and
F.
Petruccione
,
Phys. Rev. A
59
,
1633
(
1999
).
24.
P.
Gaspard
and
M.
Nagaoka
,
J. Chem. Phys.
111
,
5676
(
1999
).
25.
R.
Biele
and
R.
D’Agosta
,
J. Phys.: Condens. Matter
24
,
273201
(
2012
).
26.
E.
Coccia
,
F.
Troiani
, and
S.
Corni
,
J. Chem. Phys.
148
,
204112
(
2018
).
27.
I.
Duchemin
,
D.
Jacquemin
, and
X.
Blase
,
J. Chem. Phys.
144
,
164106
(
2016
).
28.
I.
Duchemin
,
C. A.
Guido
,
D.
Jacquemin
, and
X.
Blase
,
Chem. Sci.
9
,
4430
(
2018
).
29.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Phys. Chem. A
102
,
870
(
1998
).
30.
R.
Cammi
,
C.
Cappelli
,
S.
Corni
, and
J.
Tomasi
,
J. Phys. Chem. A
104
,
9874
(
2000
).
31.
J.
Tomasi
,
R.
Cammi
,
B.
Mennucci
,
C.
Cappelli
, and
S.
Corni
,
Phys. Chem. Chem. Phys.
4
,
5697
(
2002
).
32.
G.
Scalmani
and
M. J.
Frisch
,
J. Chem. Phys.
132
,
114110
(
2010
).
33.
Y.
Georgievskii
,
C.-p.
Hsu
, and
R. A.
Marcus
,
J. Chem. Phys.
110
,
5307
(
1999
).
34.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Atom-Photon Interactions: Basic Processes and Applications
(
Wiley-WCH
,
2004
), Chap. 4, pp.
257
351
.
35.
V.
Magnasco
,
Elementary Molecular Quantum Mechanics
(
Elsevier
,
2013
).
36.
P.
Norman
,
D. M.
Bishop
,
H. J. A.
Jensen
, and
J.
Oddershede
,
J. Chem. Phys.
123
,
194103
(
2005
).
37.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
38.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
(
Academic Press
,
1992
).
39.
C.
Amovilli
,
Chem. Phys. Lett.
229
,
244
(
1994
).
40.
C.
Amovilli
and
B.
Mennucci
,
J. Phys. Chem. B
101
,
1051
(
1997
).
41.
B.
Linder
,
J. Chem. Phys.
37
,
963
(
1962
).
42.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
43.
R.
McWeeny
,
Proc. R. Soc. London, Ser. A
A253
,
242
(
1959
).
44.
R.
McWeeny
and
B. T.
Stucliffe
,
Proc. R. Soc. London, Ser. A
A273
,
103
(
1963
).
45.
C.
Amovilli
and
R.
McWeeny
,
Chem. Phys.
140
,
343
(
1990
).
46.
B.
Lunkenheimer
and
A.
Köhn
,
J. Chem. Theory Comput.
9
,
977
(
2013
).
47.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
49.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
, Jr.
,
J. Comput. Chem.
14
,
1347
(
1993
).
50.
M. S.
Gordon
and
M. W.
Schmidt
, “
Advances in electronic structure theory: Gamess a decade later
,” in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
and
G. E.
Scuseria
(
Elsevier
,
Amsterdam
,
2005
), pp.
1167
1189
.
51.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
).
52.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
9
,
3649
(
2013
).
53.
F.
Floris
and
J.
Tomasi
,
J. Comput. Chem.
10
,
616
(
1989
).
54.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
,
J. Chem. Phys.
124
,
124520
(
2006
).
55.
R.
Cammi
,
J. Chem. Phys.
131
,
164104
(
2009
).
56.
M.
Caricato
,
J. Chem. Phys.
135
,
074113
(
2011
).
You do not currently have access to this content.