The Perdew–Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights or dissociation energies but results in over-correcting the properties well described by SI-uncorrected semi-local functional. One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction of each orbital in the many-electron region. We have implemented the orbitalwise scaled down SI-correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi–Löwdin SI-correction method. After validating the OSIC implementation with previously reported OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation and reaction energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the −1/r asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides a more balanced description of total energies and barrier heights.

1.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
2.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
3.
J. P.
Perdew
and
K.
Schmidt
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
4.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
(
1992
).
5.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
6.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]
,”
Phys. Rev. Lett.
78
,
1396
(
1997
).
7.
A. D.
Becke
, “
A new mixing of Hartree-Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
(
1993
).
8.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
The impact of the self-interaction error on the density functional theory description of dissociating radical cations: Ionic and covalent dissociation limits
,”
J. Chem. Phys.
120
,
524
(
2004
).
9.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
10.
Y.
Zhang
and
W.
Yang
, “
A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons
,”
J. Chem. Phys.
109
,
2604
(
1998
).
11.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
, “
Development of exchange-correlation functionals with minimal many-electron self-interaction error
,”
J. Chem. Phys.
126
,
191109
(
2007
).
12.
D. S.
Ranasinghe
,
J. T.
Margraf
,
Y.
Jin
, and
R. J.
Bartlett
, “
Does the ionization potential condition employed in QTP functionals mitigate the self-interaction error?
,”
J. Chem. Phys.
146
,
034102
(
2017
).
13.
P.
Klüpfel
,
P. M.
Dinh
,
P.-G.
Reinhard
, and
E.
Suraud
, “
Koopmans’ condition in self-interaction-corrected density-functional theory
,”
Phys. Rev. A
88
,
052501
(
2013
).
14.
N. I.
Gidopoulos
and
N. N.
Lathiotakis
, “
Constraining density functional approximations to yield self-interaction free potentials
,”
J. Chem. Phys.
136
,
224109
(
2012
).
15.
R. A.
Heaton
,
J. G.
Harrison
, and
C. C.
Lin
, “
Self-interaction correction for density-functional theory of electronic energy bands of solids
,”
Phys. Rev. B
28
,
5992
(
1983
).
16.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Local-density Hartree-Fock theory of electronic states of molecules with self-interaction correction
,”
J. Chem. Phys.
80
,
1972
(
1984
).
17.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
, “
Density-functional theory with self-interaction correction: Application to the lithium molecule
,”
J. Chem. Phys.
82
,
2688
(
1985
).
18.
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
, “
The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules
,”
J. Chem. Phys.
112
,
7880
(
2000
).
19.
J.
Garza
,
R.
Vargas
,
J. A.
Nichols
, and
D. A.
Dixon
, “
Orbital energy analysis with respect to LDA and self-interaction corrected exchange-only potentials
,”
J. Chem. Phys.
114
,
639
(
2001
).
20.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
, “
Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory
,”
J. Chem. Phys.
115
,
26
(
2001
).
21.
M. K.
Harbola
, “
Theoretical investigation of the polarizability of small metal clusters
,”
Solid State Commun.
98
,
629
(
1996
).
22.
S.
Patchkovskii
and
T.
Ziegler
, “
Improving difficult reaction barriers with self-interaction corrected density functional theory
,”
J. Chem. Phys.
116
,
7806
(
2002
).
23.
S.
Patchkovskii
and
T.
Ziegler
, “
Phosphorus NMR chemical shifts with self-interaction free, gradient-corrected DFT
,”
J. Phys. Chem. A
106
,
1088
(
2002
).
24.
S.
Goedecker
and
C. J.
Umrigar
, “
Critical assessment of the self-interaction-corrected–local-density-functional method and its algorithmic implementation
,”
Phys. Rev. A
55
,
1765
(
1997
).
25.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
, “
Electron correlation and the self-interaction error of density functional theory
,”
Mol. Phys.
100
,
1771
(
2002
).
26.
V.
Polo
,
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
Long-range and short-range Coulomb correlation effects as simulated by Hartree–Fock, local density approximation, and generalized gradient approximation exchange functionals
,”
Theor. Chim. Acta
109
,
22
(
2003
).
27.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
, “
Effect of the self-interaction error for three-electron bonds: On the development of new exchange-correlation functionals
,”
Phys. Chem. Chem. Phys.
6
,
1096
(
2004
).
28.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Effect of the Perdew-Zunger self-interaction correction on the thermochemical performance of approximate density functionals
,”
J. Chem. Phys.
121
,
8187
(
2004
).
29.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Ionization potentials and electron affinities in the Perdew-Zunger self-interaction corrected density-functional theory
,”
J. Chem. Phys.
122
,
184107
(
2005
).
30.
O. A.
Vydrov
,
G. E.
Scuseria
,
J. P.
Perdew
,
A.
Ruzsinszky
, and
G. I.
Csonka
, “
Scaling down the Perdew-Zunger self-interaction correction in many-electron regions
,”
J. Chem. Phys.
124
,
094108
(
2006
).
31.
R. R.
Zope
,
M. K.
Harbola
, and
R. K.
Pathak
, “
Atomic Compton profiles within different exchange-only theories
,”
Eur. Phys. J. D
7
,
151
(
1999
).
32.
O. A.
Vydrov
and
G. E.
Scuseria
, “
A simple method to selectively scale down the self-interaction correction
,”
J. Chem. Phys.
124
,
191101
(
2006
).
33.
T.
Tsuneda
,
M.
Kamiya
, and
K.
Hirao
, “
Regional self-interaction correction of density functional theory
,”
J. Chem. Phys.
24
,
1592
(
2003
).
34.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
, “
Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory
,”
Phys. Rev. A
45
,
101
(
1992
).
35.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
, “
Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory
,”
Phys. Rev. A
46
,
5453
(
1992
).
36.
U.
Lundin
and
O.
Eriksson
, “
Novel method of self-interaction corrections in density functional calculations
,”
Int. J. Quantum Chem.
81
,
247
(
2001
).
37.
Y.
Li
,
J. B.
Krieger
, and
G. J.
Iafrate
, “
Self-consistent calculations of atomic properties using self-interaction-free exchange-only Kohn-Sham potentials
,”
Phys. Rev. A
47
,
165
(
1993
).
38.
S.
Lehtola
,
M.
Head-Gordon
, and
H.
Jónsson
, “
Complex orbitals, multiple local minima, and symmetry breaking in Perdew-Zunger self-interaction corrected density functional theory calculations
,”
J. Chem. Theory Comput.
12
,
3195
(
2016
).
39.
G. I.
Csonka
and
B. G.
Johnson
, “
Inclusion of exact exchange for self-interaction corrected H3 density functional potential energy surface
,”
Theor. Chim. Acta
99
,
158
(
1998
).
40.
L.
Petit
,
A.
Svane
,
M.
Lüders
,
Z.
Szotek
,
G.
Vaitheeswaran
,
V.
Kanchana
, and
W. M.
Temmerman
, “
Phase transitions in rare earth tellurides under pressure
,”
J. Phys. Cond. Matter
26
,
274213
(
2014
).
41.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
(
2008
).
42.
T.
Schmidt
,
E.
Kraisler
,
L.
Kronik
, and
S.
Kümmel
, “
One-electron self-interaction and the asymptotics of the Kohn–Sham potential: An impaired relation
,”
Phys. Chem. Chem. Phys.
16
,
14357
(
2014
).
43.
D.-y.
Kao
,
M.
Pederson
,
T.
Hahn
,
T.
Baruah
,
S.
Liebing
, and
J.
Kortus
, “
The role of self-interaction corrections, vibrations, and spin-orbit in determining the ground spin state in a simple heme
,”
Magnetochemistry
3
,
31
(
2017
).
44.
S.
Schwalbe
,
T.
Hahn
,
S.
Liebing
,
K.
Trepte
, and
J.
Kortus
, “
Fermi-Löwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation
,”
J. Comput. Chem.
39
,
2463
(
2018
).
45.
H.
Jónsson
,
K.
Tsemekhman
, and
E. J.
Bylaska
, “
Accurate self-interaction correction to semilocal density functionals
,” in
Abstracts of Papers of the American Chemical Society
(
American Chemical Society
,
Washington, USA
,
2007
), Vol. 233, p.
120
.
46.
M. M.
Rieger
and
P.
Vogl
, “
Self-interaction corrections in semiconductors
,”
Phys. Rev. B
52
,
16567
(
1995
).
47.
W.
Temmerman
,
A.
Svane
,
Z.
Szotek
,
H.
Winter
, and
S.
Beiden
, “
On the implementation of the self-interaction corrected local spin density approximation for d-and f-electron systems
,” in
Electronic Structure and Physical Properties of Solids
(
Springer
,
1999
), pp.
286
312
.
48.
M.
Daene
,
M.
Lueders
,
A.
Ernst
,
D.
Ködderitzsch
,
W. M.
Temmerman
,
Z.
Szotek
, and
W.
Hergert
, “
Self-interaction correction in multiple scattering theory: Application to transition metal oxides
,”
J. Phys.: Condens. Matter
21
,
045604
(
2009
).
49.
Z.
Szotek
,
W. M.
Temmerman
, and
H.
Winter
, “
Self-interaction correction of localized bands within the LMTO-ASA band structure method
,”
Physica B
172
,
19
(
1991
).
50.
J.
Messud
,
P. M.
Dinh
,
P.-G.
Reinhard
, and
E.
Suraud
, “
Time-dependent density-functional theory with a self-interaction correction
,”
Phys. Rev. Lett.
101
,
096404
(
2008
).
51.
J.
Messud
,
P. M.
Dinh
,
P.-G.
Reinhard
, and
E.
Suraud
, “
Improved slater approximation to SIC–OEP
,”
Chem. Phys. Lett.
461
,
316
(
2008
).
52.
M.
Lundberg
and
P. E. M.
Siegbahn
, “
Quantifying the effects of the self-interaction error in DFT: When do the delocalized states appear?
,”
J. Chem. Phys.
122
,
224103
(
2005
).
53.
T.
Körzdörfer
,
M.
Mundt
, and
S.
Kümmel
, “
Electrical response of molecular systems: The power of self-interaction corrected Kohn-Sham theory
,”
Phys. Rev. Lett.
100
,
133004
(
2008
).
54.
T.
Körzdörfer
,
S.
Kümmel
, and
M.
Mundt
, “
Self-interaction correction and the optimized effective potential
,”
J. Chem. Phys.
129
,
014110
(
2008
).
55.
I.
Ciofini
,
C.
Adamo
, and
H.
Chermette
, “
Self-interaction error in density functional theory: A mean-field correction for molecules and large systems
,”
Chem. Phys.
309
,
67
(
2005
).
56.
T.
Baruah
,
R. R.
Zope
,
A.
Kshirsagar
, and
R. K.
Pathak
, “
Positron binding: A positron-density viewpoint
,”
Phys. Rev. A
50
,
2191
(
1994
).
57.
A. I.
Johnson
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
J. E.
Peralta
, and
K. A.
Jackson
, “
The effect of self-interaction error on electrostatic dipoles calculated using density functional theory
,”
J. Chem. Phys.
151
,
174106
(
2019
).
58.
J.
Vargas
,
P.
Ufondu
,
T.
Baruah
,
Y.
Yamamoto
,
K. A.
Jackson
, and
R. R.
Zope
, “
Importance of self-interaction-error removal in density functional calculations on water cluster anions
,”
Phys. Chem. Chem. Phys.
22
,
3789
(
2020
).
59.
K.
Trepte
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
D.-Y.
Kao
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
,
K. P. K.
Withanage
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Analytic atomic gradients in the Fermi-Löwdin orbital self-interaction correction
,”
J. Comput. Chem.
40
,
820
(
2019
).
60.
K. P. K.
Withanage
,
K.
Trepte
,
J. E.
Peralta
,
T.
Baruah
,
R.
Zope
, and
K. A.
Jackson
, “
On the question of the total energy in the Fermi-Löwdin orbital self-interaction correction method
,”
J. Chem. Theory Comput.
14
,
4122
(
2018
).
61.
M. R.
Pederson
,
T.
Baruah
,
D.-y.
Kao
, and
L.
Basurto
, “
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
,”
J. Chem. Phys.
144
,
164117
(
2016
).
62.
S.
Schwalbe
,
L.
Fiedler
,
T.
Hahn
,
K.
Trepte
,
J.
Kraus
, and
J.
Kortus
, “
PyFLOSIC—Python based Fermi-Löwdin orbital self-interaction correction
,” arXiv:1905.02631 [physics.comp-ph] (
2019
).
63.
D.-y.
Kao
,
K.
Withanage
,
T.
Hahn
,
J.
Batool
,
J.
Kortus
, and
K.
Jackson
, “
Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li–Kr
,”
J. Chem. Phys.
147
,
164107
(
2017
).
64.
R. P.
Joshi
,
K.
Trepte
,
K. P. K.
Withanage
,
K.
Sharkas
,
Y.
Yamamoto
,
L.
Basurto
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Fermi-Löwdin orbital self-interaction correction to magnetic exchange couplings
,”
J. Chem. Phys.
149
,
164101
(
2018
).
65.
K.
Sharkas
,
L.
Li
,
K.
Trepte
,
K. P. K.
Withanage
,
R. P.
Joshi
,
R. R.
Zope
,
T.
Baruah
,
J. K.
Johnson
,
K. A.
Jackson
, and
J. E.
Peralta
, “
Shrinking self-interaction errors with the Fermi–Löwdin orbital self-interaction-corrected density functional approximation
,”
J. Phys. Chem. A
122
,
9307
(
2018
).
66.
K. A.
Jackson
,
J. E.
Peralta
,
R. P.
Joshi
,
K. P.
Withanage
,
K.
Trepte
,
K.
Sharkas
, and
A. I.
Johnson
, “
Towards efficient density functional theory calculations without self-interaction: The Fermi-Löwdin orbital self-interaction correction
,”
J. Phys.: Conf. Ser.
1290
,
012002
(
2019
).
67.
K.
Sharkas
,
K.
Wagle
,
B.
Santra
,
S.
Akter
,
R. R.
Zope
,
T.
Baruah
,
K. A.
Jackson
,
J. P.
Perdew
, and
J. E.
Peralta
, “
Self-interaction error overbinds water clusters but cancels in structural energy differences
,”
Proc. Natl. Acad. Sci. U. S. A.
(unpublished).
68.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
, and
M. R.
Pederson
, “
Paradox of self-interaction correction: How can anything so right be so wrong?
,” in
Advances in Atomic, Molecular, and Optical Physics
(
Academic Press
,
2015
), Vol. 64, Chap. I, pp.
1
14
.
69.
R. R.
Zope
,
Y.
Yamamoto
,
C. M.
Diaz
,
T.
Baruah
,
J. E.
Peralta
,
K. A.
Jackson
,
B.
Santra
, and
J. P.
Perdew
, “
A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction
,”
J. Chem. Phys.
151
,
214108
(
2019
).
70.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
, “
The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules
,”
J. Chem. Phys.
137
,
124102
(
2012
).
71.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
, “
Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids
,”
Phys. Rev. Lett.
91
,
146401
(
2003
).
72.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
73.
M.
Ernzerhof
and
G. E.
Scuseria
, “
Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional
,”
J. Chem. Phys.
110
,
5029
(
1999
).
74.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
, “
Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+.
,”
J. Chem. Phys.
126
,
104102
(
2007
).
75.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
76.
Y.
Fu
and
D. J.
Singh
, “
Applicability of the strongly constrained and appropriately normed density functional to transition-metal magnetism
,”
Phys. Rev. Lett.
121
,
207201
(
2018
).
77.
M.
Chen
,
H.-Y.
Ko
,
R. C.
Remsing
,
M. F. C.
Andrade
,
B.
Santra
,
Z.
Sun
,
A.
Selloni
,
R.
Car
,
M. L.
Klein
,
J. P.
Perdew
 et al, “
Ab initio theory and modeling of water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10846
(
2017
).
78.
A.
Paul
,
J.
Sun
,
J. P.
Perdew
, and
U. V.
Waghmare
, “
Accuracy of first-principles interatomic interactions and predictions of ferroelectric phase transitions in perovskite oxides: Energy functional and effective Hamiltonian
,”
Phys. Rev. B
95
,
054111
(
2017
).
79.
Y.
Yamamoto
,
C. M.
Diaz
,
L.
Basurto
,
K. A.
Jackson
,
T.
Baruah
, and
R. R.
Zope
, “
Fermi-Löwdin orbital self-interaction correction using the strongly constrained and appropriately normed meta-GGA functional
,”
J. Chem. Phys.
151
,
154105
(
2019
).
80.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Communication: Self-interaction correction with unitary invariance in density functional theory
,”
J. Chem. Phys.
140
,
121103
(
2014
).
81.
W. L.
Luken
and
D. N.
Beratan
, “
Localized orbitals and the Fermi hole
,”
Theor. Chem. Acc.
61
,
265
(
1982
).
82.
W. L.
Luken
and
J. C.
Culberson
, “
Localized orbitals based on the Fermi hole
,”
Theor. Chem. Acc.
66
,
279
(
1984
).
83.
J. M.
Leonard
and
W. L.
Luken
, “
Quadratically convergent calculation of localized molecular orbitals
,”
Theor. Chem. Acc.
62
,
107
(
1982
).
84.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
(
1989
).
85.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
(
1990
).
86.
J. W.
Furness
and
J.
Sun
, “
Enhancing the efficiency of density functionals with an improved iso-orbital indicator
,”
Phys. Rev. B
99
,
041119
(
2019
).
87.
R. R.
Zope
and
B. I.
Dunlap
, “
Slater’s exchange parameters α for analytic and variational Xα calculations
,”
J. Chem. Theory Comput.
1
,
1193
(
2005
).
88.
E.
Livshits
and
R.
Baer
, “
A well-tempered density functional theory of electrons in molecules
,”
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
89.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
90.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
, “
Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals
,”
J. Chem. Theory Comput.
8
,
1515
(
2012
).
91.
M. E.
Foster
and
B. M.
Wong
, “
Nonempirically tuned range-separated DFT accurately predicts both fundamental and excitation gaps in dna and rna nucleobases
,”
J. Chem. Theory Comput.
8
,
2682
(
2012
).
92.
H.
Sun
and
J.
Autschbach
, “
Influence of the delocalization error and applicability of optimal functional tuning in density functional calculations of nonlinear optical properties of organic donor–acceptor chromophores
,”
ChemPhysChem
14
,
2450
(
2013
).
93.
R. R.
Zope
,
T.
Baruah
,
Y.
Yamamoto
,
L.
Basurto
,
C.
Diaz
,
J.
Peralta
, and
K. A.
Jackson
, FLOSIC 0.1.2, based on the NRLMOL code of M. R. Pederson.
94.
Y.
Yamamoto
,
L.
Basurto
,
C. M.
Diaz
,
R. R.
Zope
, and
T.
Baruah
, “
Self-interaction correction to density functional approximations using Fermi-Löwdin orbitals: Methodology and parallelization
” (unpublished).
95.
D.
Porezag
and
M. R.
Pederson
, “
Optimization of Gaussian basis sets for density-functional calculations
,”
Phys. Rev. A
60
,
2840
(
1999
).
96.
M. R.
Pederson
and
K. A.
Jackson
, “
Variational mesh for quantum-mechanical simulations
,”
Phys. Rev. B
41
,
7453
(
1990
).
97.
K. P. K.
Withanage
,
S.
Akter
,
C.
Shahi
,
R. P.
Joshi
,
C.
Diaz
,
Y.
Yamamoto
,
R.
Zope
,
T.
Baruah
,
J. P.
Perdew
,
J. E.
Peralta
, and
K. A.
Jackson
, “
Self-interaction-free electric dipole polarizabilities for atoms and their ions using the Fermi-Löwdin self-interaction correction
,”
Phys. Rev. A
100
,
012505
(
2019
).
98.
Z.-h.
Yang
,
M. R.
Pederson
, and
J. P.
Perdew
, “
Full self-consistency in the Fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
99.
S. J.
Chakravorty
,
S. R.
Gwaltney
,
E. R.
Davidson
,
F. A.
Parpia
, and
C. F.
Fischer
, “
Ground-state correlation energies for atomic ions with 3 to 18 electrons
,”
Phys. Rev. A
47
,
3649
(
1993
).
100.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
101.
National Institute of Standards and Technology, NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 Release 19, April 2018, edited by
R. D.
Johnson
 III
, http://cccbdb.nist.gov/.
102.
B. J.
Lynch
and
D. G.
Truhlar
, “
Small representative benchmarks for thermochemical calculations
,”
J. Phys. Chem. A
107
,
8996
(
2003
).
103.
R.
Peverati
and
D. G.
Truhlar
, “
Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry
,”
J. Chem. Phys.
135
,
191102
(
2011
).
104.
L.
Goerigk
and
S.
Grimme
, “
A general database for main group thermochemistry, kinetics, and noncovalent interactions—Assessment of common and reparameterized (meta-)GGA density functionals
,”
J. Chem. Theory Comput.
6
,
107
(
2010
).
105.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
106.
C.
Shahi
,
P.
Bhattarai
,
K.
Wagle
,
B.
Santra
,
S.
Schwalbe
,
T.
Hahn
,
J.
Kortus
,
K. A.
Jackson
,
J. E.
Peralta
,
K.
Trepte
,
S.
Lehtola
,
N. K.
Nepal
,
H.
Myneni
,
B.
Neupane
,
S.
Adhikari
,
A.
Ruzsinszky
,
Y.
Yamamoto
,
T.
Baruah
,
R. R.
Zope
, and
J. P.
Perdew
, “
Stretched or noded orbital densities and self-interaction correction in density functional theory
,”
J. Chem. Phys.
150
,
174102
(
2019
).
107.
B.
Santra
and
J. P.
Perdew
, “
Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms?
,”
J. Chem. Phys.
150
,
174106
(
2019
).
108.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
109.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
, “
Exact differential equation for the density and ionization energy of a many-particle system
,”
Phys. Rev. A
30
,
2745
(
1984
).
110.
C.-O.
Almbladh
and
U.
von Barth
, “
Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues
,”
Phys. Rev. B
31
,
3231
(
1985
).
111.
J. P.
Perdew
and
M.
Levy
, “
Comment on “Significance of the highest occupied Kohn-Sham eigenvalue”
,”
Phys. Rev. B
56
,
16021
(
1997
).
112.
M. K.
Harbola
, “
Relationship between the highest occupied Kohn-Sham orbital eigenvalue and ionization energy
,”
Phys. Rev. B
60
,
4545
(
1999
).
113.
M. R.
Pederson
and
T.
Baruah
, “
Single Hamiltonian for self-interaction corrected DFT with Fermi-Löwdin orbitals
” (unpublished).
You do not currently have access to this content.