Kinetic Monte Carlo (kMC) simulations are frequently used to study (electro-)chemical processes within science and engineering. kMC methods provide insight into the interplay of stochastic processes and can link atomistic material properties with macroscopic characteristics. Significant problems concerning the computational demand arise if processes with large time disparities are competing. Acceleration algorithms are required to make slow processes accessible. Especially, the accelerated superbasin kMC (AS-kMC) scheme has been frequently applied within chemical reaction networks. For larger systems, the computational overhead of the AS-kMC is significant as the computation of the superbasins is done during runtime and comes with the need for large databases. Here, we propose a novel acceleration scheme for diffusion and transport processes within kMC simulations. Critical superbasins are detected during the system initialization. Scaling factors for the critical rates within the superbasins, as well as a lower bound for the number of sightings, are derived. Our algorithm exceeds the AS-kMC in the required simulation time, which we demonstrate with a 1D-chain example. In addition, we apply the acceleration scheme to study the time-of-flight (TOF) of charge carriers within organic semiconductors. In this material class, time disparities arise due to a significant spread of transition rates. The acceleration scheme allows a significant acceleration up to a factor of 65 while keeping the error of the TOF values negligible. The computational overhead is negligible, as all superbasins only need to be computed once.

1.
D. T.
Gillespie
, “
A rigorous derivation of the chemical master equation
,”
Physica A
188
(
1-3
),
404
425
(
1992
).
2.
M.
Stamatakis
and
D. G.
Vlachos
, “
Unraveling the complexity of catalytic reactions via kinetic Monte Carlo simulation: Current status and frontiers
,”
ACS Catal.
2
(
12
),
2648
2663
(
2012
).
3.
K.
Reuter
and
H.
Metiu
, “
A decade of computational surface catalysis
,” in
Handbook of Materials Modeling: Applications: Current and Emerging Materials
(
Springer
,
2018
), pp.
1
11
.
4.
A.
Jansen
and
J.
Lukkien
, “
Dynamic Monte-Carlo simulations of reactions in heterogeneous catalysis
,”
Catal. Today
53
(
2
),
259
271
(
1999
).
5.
S.
Piana
,
M.
Reyhani
, and
J. D.
Gale
, “
Simulating micrometre-scale crystal growth from solution
,”
Nature
438
(
7064
),
70
(
2005
).
6.
P.
Zhu
and
R.
Smith
, “
Dynamic simulation of crystal growth by Monte Carlo method—I. Model description and kinetics
,”
Acta Metall. Mater.
40
(
4
),
683
692
(
1992
).
7.
L. A.
Zepeda-Ruiz
and
G. H.
Gilmer
, “
Monte Carlo simulations of crystal growth
,” in
Handbook of Crystal Growth
(
Elsevier
,
2015
), pp.
445
475
.
8.
P. P.
Dholabhai
,
S.
Anwar
,
J. B.
Adams
,
P.
Crozier
, and
R.
Sharma
, “
Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design
,”
J. Solid State Chem.
184
(
4
),
811
817
(
2011
).
9.
M.
Grabowski
,
J.
Rogal
, and
R.
Drautz
, “
Kinetic Monte Carlo simulations of vacancy diffusion in nondilute Ni-X (X= Re, W, Ta) alloys
,”
Phys. Rev. Mater.
2
(
12
),
123403
(
2018
).
10.
W.
Young
and
E.
Elcock
, “
Monte Carlo studies of vacancy migration in binary ordered alloys: I
,”
Proc. Phys. Soc.
89
(
3
),
735
(
1966
).
11.
C.
Groves
and
N. C.
Greenham
, “
Monte Carlo simulations of organic photovoltaics
,” in
Multiscale Modelling of Organic and Hybrid Photovoltaics
(
Springer
,
2013
), pp.
257
278
.
12.
H.
Bässler
, “
Charge transport in disordered organic photoconductors a Monte Carlo simulation study
,”
Phys. Status Solidi B
175
(
1
),
15
56
(
1993
).
13.
W.
Kaiser
,
T.
Albes
, and
A.
Gagliardi
, “
Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder
,”
Phys. Chem. Chem. Phys.
20
(
13
),
8897
8908
(
2018
).
14.
W.
Kaiser
,
J.
Popp
,
M.
Rinderle
,
T.
Albes
, and
A.
Gagliardi
, “
Generalized kinetic Monte Carlo framework for organic electronics
,”
Algorithms
11
(
4
),
37
(
2018
).
15.
L.
Nurminen
,
A.
Kuronen
, and
K.
Kaski
, “
Kinetic Monte Carlo simulation of nucleation on patterned substrates
,”
Phys. Rev. B
63
(
3
),
035407
(
2000
).
16.
P.
Zhang
,
X.
Zheng
,
S.
Wu
,
J.
Liu
, and
D.
He
, “
Kinetic Monte Carlo simulation of Cu thin film growth
,”
Vacuum
72
(
4
),
405
410
(
2004
).
17.
D. G.
Vlachos
, “
A review of multiscale analysis: Examples from systems biology, materials engineering, and other fluid–surface interacting systems
,”
Adv. Chem. Eng.
30
,
1
61
(
2005
).
18.
M. A.
Katsoulakis
and
D. G.
Vlachos
, “
Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles
,”
J. Chem. Phys.
119
(
18
),
9412
9427
(
2003
).
19.
J.
Dai
,
W. D.
Seider
, and
T.
Sinno
, “
Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles
,”
J. Chem. Phys.
128
(
19
),
194705
(
2008
).
20.
A.
Chatterjee
,
D. G.
Vlachos
, and
M. A.
Katsoulakis
, “
Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules
,”
J. Chem. Phys.
121
(
22
),
11420
11431
(
2004
).
21.
A.
Chatterjee
and
D. G.
Vlachos
, “
Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures
,”
J. Chem. Phys.
124
(
6
),
064110
(
2006
).
22.
D. G.
Vlachos
, “
Temporal coarse-graining of microscopic-lattice kinetic Monte Carlo simulations via τ leaping
,”
Phys. Rev. E
78
(
4
),
046713
(
2008
).
23.
D. T.
Gillespie
, “
Approximate accelerated stochastic simulation of chemically reacting systems
,”
J. Chem. Phys.
115
(
4
),
1716
1733
(
2001
).
24.
D. J.
Higham
, “
Modeling and simulating chemical reactions
,”
SIAM Rev.
50
(
2
),
347
368
(
2008
).
25.
W.
Koh
and
K. T.
Blackwell
, “
An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping
,”
J. Chem. Phys.
134
(
15
),
154103
(
2011
).
26.
M.
Rathinam
,
L. R.
Petzold
,
Y.
Cao
, and
D. T.
Gillespie
, “
Consistency and stability of tau-leaping schemes for chemical reaction systems
,”
Multiscale Model. Simul.
4
(
3
),
867
895
(
2005
).
27.
T.
Li
, “
Analysis of explicit tau-leaping schemes for simulating chemically reacting systems
,”
Multiscale Model. Simul.
6
(
2
),
417
436
(
2007
).
28.
M.
Snyder
,
A.
Chatterjee
, and
D.
Vlachos
, “
Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems
,”
Comput. Chem. Eng.
29
(
4
),
701
712
(
2005
).
29.
H.
Resat
,
H. S.
Wiley
, and
D. A.
Dixon
, “
Probability-weighted dynamic Monte Carlo method for reaction kinetics simulations
,”
J. Phys. Chem. B
105
(
44
),
11026
11034
(
2001
).
30.
A.
Chatterjee
and
A. F.
Voter
, “
Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants
,”
J. Chem. Phys.
132
(
19
),
194101
(
2010
).
31.
E. C.
Dybeck
,
C. P.
Plaisance
, and
M.
Neurock
, “
Generalized temporal acceleration scheme for kinetic Monte Carlo simulations of surface catalytic processes by scaling the rates of fast reactions
,”
J. Chem. Theory Comput.
13
(
4
),
1525
1538
(
2017
).
32.
A.
Chatterjee
and
D. G.
Vlachos
, “
An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
,”
J. Comput.-Aided Mater. Des.
14
(
2
),
253
308
(
2007
).
33.
H.
Oberhofer
,
K.
Reuter
, and
J.
Blumberger
, “
Charge transport in molecular materials: An assessment of computational methods
,”
Chem. Rev.
117
(
15
),
10319
10357
(
2017
).
34.
J.
Lederer
,
W.
Kaiser
,
A.
Mattoni
, and
A.
Gagliardi
, “
Machine learning–based charge transport computation for pentacene
,”
Adv. Theory Simul.
2
(
2
),
1800136
(
2019
).
35.
V.
Stehr
,
J.
Pfister
,
R.
Fink
,
B.
Engels
, and
C.
Deibel
, “
First-principles calculations of anisotropic charge-carrier mobilities in organic semiconductor crystals
,”
Phys. Rev. B
83
(
15
),
155208
(
2011
).
36.
A.
Miller
and
E.
Abrahams
, “
Impurity conduction at low concentrations
,”
Phys. Rev.
120
(
3
),
745
(
1960
).

Supplementary Material

You do not currently have access to this content.