Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.

1.
R. P.
Feynman
,
Quantum Electrodynamics
(
CRC Press
,
2018
).
2.
J. T.
Devreese
, “
Lectures on Fröhlich polarons from 3D to 0D - including detailed theoretical derivations
,” arXiv:1012.4576v6 (
2015
).
3.
J. T.
Devreese
and
A. S.
Alexandrov
, “
Fröhlich polaron and bipolaron: Recent developments
,”
Rep. Prog. Phys.
72
,
066501
(
2009
).
4.
N. I.
Kashirina
and
V. D.
Lakhno
, “
Large-radius bipolaron and the polaron–polaron interaction
,”
Phys.-Uspekhi
53
,
431
(
2010
).
5.
A. S.
Alexandrov
,
Theory of Superconductivity: From Weak to Strong Coupling
(
CRC Press
,
2003
).
6.
P.
Quémerais
and
S.
Fratini
, “
Polaron crystallization and the metal–insulator transition
,”
Int. J. Mod. Phys. B
12
,
3131
3136
(
1998
).
7.
S.
Fratini
and
P.
Quémerais
, “
Polarization catastrophe in the polaronic Wigner crystal
,”
Eur. Phys. J. B
29
,
41
49
(
2002
).
8.
G.
Iadonisi
,
V.
Mukhomorov
,
G.
Cantele
, and
D.
Ninno
, “
Formation of a large polaron crystal from a homogeneous, dilute polaron gas
,”
Phys. Rev. B
76
,
144303
(
2007
).
9.
F. V.
Kusmartsev
, “
Electronic molecules in solids
,”
Europhys. Lett.
54
,
786
(
2001
).
10.
C. A.
Perroni
,
G.
Iadonisi
, and
V. K.
Mukhomorov
, “
Formation of polaron clusters
,”
Eur. Phys. J. B
41
,
163
170
(
2004
).
11.
M.
Bruderer
,
A.
Klein
,
S. R.
Clark
, and
D.
Jaksch
, “
Polaron physics in optical lattices
,”
Phys. Rev. A
76
,
011605(R)
(
2007
).
12.
V. M.
Fomin
,
V. N.
Gladilin
,
J. T.
Devreese
,
E. P.
Pokatilov
,
S. N.
Balaban
, and
S. N.
Klimin
, “
Photoluminescence of spherical quantum dots
,”
Phys. Rev. B
57
,
2415
(
1998
).
13.
S. N.
Klimin
,
V. M.
Fomin
,
F.
Brosens
, and
J. T.
Devreese
, “
Ground state and optical conductivity of interacting polarons in a quantum dot
,”
Phys. Rev. B
69
,
235324
(
2004
).
14.
A. S.
Alexandrov
and
A. M.
Bratkovsky
, “
Memory effect in a molecular quantum dot with strong electron-vibron interaction
,”
Phys. Rev. B
72
,
129901
(
2003
).
15.
A. S.
Alexandrov
and
A. M.
Bratkovsky
, “
Polaronic memory resistors strongly coupled to electrodes
,”
Phys. Rev. B
80
,
115321
(
2009
).
16.
N. B.
Jørgensen
,
L.
Wacker
,
K. T.
Skalmstang
,
M. M.
Parish
,
J.
Levinsen
,
R. S.
Christensen
,
G. M.
Bruun
, and
J. J.
Arlt
, “
Observation of attractive and repulsive polarons in a Bose-Einstein condensate
,”
Phys. Rev. Lett
117
,
055302
(
2016
).
17.
M.-G.
Hu
,
M. J.
Van de Graaff
,
D.
Kedar
,
J. P.
Corson
,
E. A.
Cornell
, and
D. S.
Jin
, “
Bose polarons in the strongly interacting regime
,”
Phys. Rev. Lett
117
,
055301
(
2016
).
18.
W.
Casteels
,
J.
Tempere
, and
J.
Devreese
, “
Many-polaron description of impurities in a Bose-Einstein condensate in the weak-coupling regime
,”
Phys. Rev. A
84
,
063612
(
2011
).
19.
D. C.
Roberts
and
S.
Rica
, “
Impurity crystal in a Bose-Einstein condensate
,”
Phys. Rev. Lett
102
,
025301
(
2009
).
20.
D. H.
Santamore
and
E.
Timmermans
, “
Multi-impurity polarons in a dilute Bose–Einstein condensate
,”
New J. Phys.
13
,
103029
(
2011
).
21.
A. A.
Blinova
,
M. G.
Boshier
, and
E.
Timmermans
, “
Two polaron flavors of the Bose-Einstein condensate impurity
,”
Phys. Rev. A
88
,
053610
(
2013
).
22.
W.
Casteels
,
J.
Tempere
, and
J. T.
Devreese
, “
Bipolarons and multipolarons consisting of impurity atoms in a Bose-Einstein condensate
,”
Phys. Rev. A
88
,
013613
(
2013
).
23.
O. I.
Utesov
,
M. I.
Baglay
, and
S. V.
Søndergaard
, “
Effective interactions in a quantum Bose-Bose mixture
,”
Phys. Rev. A
97
,
053617
(
2018
).
24.
A.
Camacho-Guardian
,
L. A. P.
Ardila
,
T.
Pohl
, and
G. M.
Bruun
, “
Bipolarons in a Bose-Einstein condensate
,”
Phys. Rev. Lett.
121
(
1
),
013401
(
2018
).
25.
M. J.
Bijlsma
,
B. A.
Heringa
, and
H. T. C.
Stoof
, “
Phonon exchange in dilute fermi-Bose mixtures: Tailoring the fermi-fermi interaction
,”
Phys. Rev. A
61
,
053601
(
2000
).
26.
M. A.
Ruderman
and
C.
Kittel
, “
Indirect exchange coupling of nuclear magnetic moments by conduction electrons
,”
Phys. Rev.
96
,
99
(
1954
).
27.
L.
Zhou
,
J.
Wiebe
,
S.
Lounis
,
E.
Vedmedenko
,
F.
Meier
,
S.
Blügel
,
P. H.
Dederichs
, and
R.
Wiesendanger
, “
Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale
,”
Nat. Phys.
6
,
187
(
2010
).
28.
A. C.
Hewson
,
The Kondo Problem to Heavy Fermions
(
Cambridge University Press
,
1997
), Vol. 2.
29.
R.
Schmidt
and
M.
Lemeshko
, “
Rotation of quantum impurities in the presence of a many-body environment
,”
Phys. Rev. Lett
114
,
203001
(
2015
).
30.
R.
Schmidt
and
M.
Lemeshko
, “
Deformation of a quantum many-particle system by a rotating impurity
,”
Phys. Rev. X
6
,
011012
(
2016
).
31.
M.
Lemeshko
and
R.
Schmidt
, “
Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets
,” in
Low Energy and Low Temperature Molecular Scattering
(
Royal Society of Chemistry
,
2017
).
32.
G.
Bighin
,
T. V.
Tscherbul
, and
M.
Lemeshko
, “
Diagrammatic Monte Carlo approach to rotating molecular impurities
,”
Phys. Rev. Lett.
121
,
165301
(
2018
).
33.
M.
Lemeshko
, “
Quasiparticle approach to molecules interacting with quantum solvents
,”
Phys. Rev. Lett
118
,
095301
(
2017
).
34.
B.
Shepperson
,
A. A.
Søndergaard
,
L.
Christiansen
,
J.
Kaczmarczyk
,
R. E.
Zillich
,
M.
Lemeshko
, and
H.
Stapelfeldt
, “
Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking free
,”
Phys. Rev. Lett
118
,
203203
(
2017
).
35.
I. N.
Cherepanov
and
M.
Lemeshko
, “
Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules
,”
Phys. Rev. Mater.
1
,
035602
(
2017
).
36.
B.
Shepperson
,
A. S.
Chatterley
,
A. A.
Søndergaard
,
L.
Christiansen
,
M.
Lemeshko
, and
H.
Stapelfeldt
, “
Strongly aligned molecules inside helium droplets in the near-adiabatic regime
,”
J. Chem. Phys.
147
,
013946
(
2017
).
37.
I. N.
Cherepanov
,
G.
Bighin
,
L.
Christiansen
,
A. V.
Jørgensen
,
R.
Schmidt
,
H.
Stapelfeldt
, and
M.
Lemeshko
, “
Far-from-equilibrium dynamics of angular momentum in a quantum many-particle system
,” arXiv:1906.12238 (
2019
).
38.
E.
Yakaboylu
,
A.
Deuchert
, and
M.
Lemeshko
, “
Emergence of non-Abelian magnetic monopoles in a quantum impurity problem
,”
Phys. Rev. Lett
119
,
235301
(
2017
).
39.
E. H.
Yakaboylu
and
M.
Lemeshko
, “
Anomalous screening of quantum impurities by a neutral environment
,”
Phys. Rev. Lett
118
,
085302
(
2017
).
40.
J. P.
Toennies
and
A. F.
Vilesov
, “
Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes
,”
Angew. Chem., Int. Ed.
43
,
2622
(
2004
).
41.
J. D.
Pickering
,
B.
Shepperson
,
B. A. K.
Hübschmann
,
F.
Thorning
, and
H.
Stapelfeldt
, “
Alignment and imaging of the CS2 dimer inside helium nanodroplets
,”
Phys. Rev. Lett.
120
,
113202
(
2018
).
42.
J.
Fischer
,
F.
Schlaghaufer
,
E.-M.
Lottner
,
A.
Slenczka
,
L.
Christiansen
,
H.
Stapelfeldt
,
M.
Karra
,
B.
Friedrich
,
T.
Mullan
,
M.
Schütz
, and
D.
Usvyat
, “
Heterogeneous clusters of phthalocyanine and water prepared and probed in superfluid helium nanodroplets
,”
J. Phys. Chem. A
123
,
10057
(
2019
).
43.
A. M.
Sadoon
,
G.
Sarma
,
E. M.
Cunningham
,
J.
Tandy
,
M. W. D.
Hanson-Heine
,
N. A.
Besley
,
S.
Yang
, and
A. M.
Ellis
, “
Infrared spectroscopy of NaCl(CH3OH)n complexes in helium nanodroplets
,”
J. Phys. Chem. A
120
,
8085
8092
(
2016
).
44.
S.
Pekar
, “
Local quantum states of electrons in an ideal ion crystal
,”
Zh. Eksp. Teor. Fiz.
16
,
341
348
(
1946
).
45.
A.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
2013
).
46.
E.
Yakaboylu
,
B.
Midya
,
A.
Deuchert
,
N.
Leopold
, and
M.
Lemeshko
, “
Theory of the rotating polaron: Spectrum and self-localization
,”
Phys. Rev. B
98
,
224506
(
2018
).
47.
B.
Midya
,
M.
Tomza
,
R.
Schmidt
, and
M.
Lemeshko
, “
Rotation of cold molecular ions inside a Bose-Einstein condensate
,”
Phys. Rev. A
94
,
041601
(
2016
).
48.
E. K.
Salje
,
A.
Alexandrov
, and
W.
Liang
,
Polarons and Bipolarons in High-Tc Superconductors and Related Materials
(
Cambridge University Press
,
2005
).
49.
A.
Stone
,
The Theory of Intermolecular Forces
(
OUP
,
Oxford
,
2013
).
50.
R. J.
Donnelly
and
C. F.
Barenghi
, “
The observed properties of liquid helium at the saturated vapor pressure
,”
J. Phys. Chem. Ref. Data
27
,
1217
1274
(
1998
).
51.
M. D.
Donsker
and
S. R. S.
Varadhan
, “
Asymptotics for the polaron
,”
Commun. Pure Appl. Math.
36
,
505
528
(
1983
).
52.
E. H.
Lieb
and
L. E.
Thomas
, “
Exact ground state energy of the strong-coupling polaron
,”
Commun. Math. Phys.
183
,
511
519
(
1997
).
53.
A.
Das
and
B. K.
Chakrabarti
,
Quantum Annealing and Related Optimization Methods
(
Springer Science & Business Media
,
2005
), Vol. 679.
54.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
Courier Corporation
,
1965
), Vol. 55.
55.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics I, Functional Analysis
(
Academic Press
,
1980
).
56.
F.
Chevy
, “
Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations
,”
Phys. Rev. A
74
,
063628
(
2006
).
57.
Z.
Lan
and
C.
Lobo
, “
A single impurity in an ideal atomic fermi gas: Current understanding and some open problems
,” arXiv:1404.3220 (
2014
).
58.
D. A.
Varshalovich
,
A. N.
Moskalev
, and
V. K.
Khersonskii
,
Quantum Theory of Angular Momentum
(
World Scientific
,
1988
).
59.
R.
Schmidt
,
H. R.
Sadeghpour
, and
E.
Demler
, “
Mesoscopic Rydberg impurity in an atomic quantum gas
,”
Phys. Rev. Lett
116
,
105302
(
2016
).
60.
F.
Camargo
,
R.
Schmidt
,
J. D.
Whalen
,
R.
Ding
,
G.
Woehl
, Jr.
,
S.
Yoshida
,
J.
Burgdörfer
,
F. B.
Dunning
,
H. R.
Sadeghpour
,
E.
Demler
 et al, “
Creation of Rydberg polarons in a Bose gas
,”
Phys. Rev. Lett
120
,
083401
(
2018
).
61.
D. I.
Pushkarov
,
Quasiparticle Theory of Defects in Solids
(
World Scientific
,
1991
).
You do not currently have access to this content.