We survey the underlying theory behind the large-scale and linear scaling density functional theory code, conquest, which shows excellent parallel scaling and can be applied to thousands of atoms with diagonalization and millions of atoms with linear scaling. We give details of the representation of the density matrix and the approach to finding the electronic ground state and discuss the implementation of molecular dynamics with linear scaling. We give an overview of the performance of the code, focusing in particular on the parallel scaling, and provide examples of recent developments and applications.

1.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
923
(
2015
).
2.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The SIESTA method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
2779
(
2002
); arXiv:cond-mat/0111138v1 [cond-mat].
3.
D. R.
Bowler
,
T.
Miyazaki
, and
M. J.
Gillan
, “
Recent progress in linear scaling ab initio electronic structure techniques
,”
J. Phys.: Condens. Matter
14
,
2781
2798
(
2002
).
4.
C.-K.
Skylaris
,
P. D.
Haynes
,
A. A.
Mostofi
, and
M. C.
Payne
, “
Introducing ONETEP: Linear-scaling density functional simulations on parallel computers
,”
J. Chem. Phys.
122
,
084119
(
2005
).
5.
M. J.
Rayson
and
P. R.
Briddon
, “
Highly efficient method for Kohn–Sham density functional calculations of 500–10 000 atom systems
,”
Phys. Rev. B
80
,
205104
(
2009
).
6.
D. R.
Bowler
and
T.
Miyazaki
, “
Calculations for millions of atoms with density functional theory: Linear scaling shows its potential
,”
J. Phys.: Condens. Matter
22
,
074207
(
2010
).
7.
J.
VandeVondele
,
U.
Borštnik
, and
J.
Hutter
, “
Linear scaling self-consistent field calculations with millions of atoms in the condensed phase
,”
J. Chem. Theory Comput.
8
,
3565
3573
(
2012
).
8.
S.
Mohr
,
L. E.
Ratcliff
,
L.
Genovese
,
D.
Caliste
,
P.
Boulanger
,
S.
Goedecker
, and
T.
Deutsch
, “
Accurate and efficient linear scaling DFT calculations with universal applicability
,”
Phys. Chem. Chem. Phys.
17
,
31360
31370
(
2015
).
9.
T.
Ozaki
,
M.
Fukuda
, and
G.
Jiang
, “
Efficient O(N) divide-conquer method with localized single-particle natural orbitals
,”
Phys. Rev. B
98
,
245137
(
2018
).
10.
C.
Romero-Muñiz
,
A.
Nakata
,
P.
Pou
,
D. R.
Bowler
,
T.
Miyazaki
, and
R.
Pérez
, “
High-accuracy large-scale DFT calculations using localized orbitals in complex electronic systems: The case of graphene–metal interfaces
,”
J. Phys.: Condens. Matter
30
,
505901
(
2018
).
11.
W.
Kohn
, “
Density functional and density matrix method scaling linearly with the number of atoms
,”
Phys. Rev. Lett.
76
,
3168
3171
(
1996
).
12.
S.
Goedecker
, “
Linear scaling electronic structure methods
,”
Rev. Mod. Phys.
71
,
1085
(
1999
).
13.
D. R.
Bowler
and
T.
Miyazaki
, “
.O(n) methods in electronic structure calculations
,”
Rep. Prog. Phys.
75
,
036503
(
2012
).
14.
D. J.
Cole
and
N. D. M.
Hine
, “
Applications of large-scale density functional theory in biology
,”
J. Phys.: Condens. Matter
28
,
393001
(
2016
).
15.
D. R.
Bowler
,
T.
Miyazaki
,
A.
Nakata
,
L.
Truflandier
,
M.
Arita
,
J. S.
Baker
,
V.
Brazdova
,
R.
Choudhury
,
S. Y.
Mujahed
,
J. T.
Poulton
,
Z.
Raza
,
A.
Sena
,
U.
Terranova
,
L.
Tong
,
A.
Torralba
,
I. J.
Bush
,
C. M.
Goringe
,
E. H.
Hernandez
, and
M. J.
Gillan
, CONQUEST: Large-scale DFT calculations,
2020
, https://github.com/OrderN/CONQUEST-release.
16.
D. R.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
17.
D.
Vanderbilt
, “
Optimally smooth norm-conserving pseudopotentials
,”
Phys. Rev. B
32
,
8412
8415
(
1985
).
18.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
19.
M.
Schlipf
and
F.
Gygi
, “
Optimization algorithm for the generation of ONCV pseudopotentials
,”
Comput. Phys. Commun.
196
,
36
44
(
2015
).
20.
K.
Lejaeghere
,
G.
Bihlmayer
,
T.
Björkman
,
P.
Blaha
,
S.
Blugel
,
V.
Blum
,
D.
Caliste
,
I. E.
Castelli
,
S. J.
Clark
,
A.
Dal Corso
,
S.
de Gironcoli
,
T.
Deutsch
,
J. K.
Dewhurst
,
I.
Di Marco
,
C.
Draxl
,
M.
Dułak
,
O.
Eriksson
,
J. A.
Flores-Livas
,
K. F.
Garrity
,
L.
Genovese
,
P.
Giannozzi
,
M.
Giantomassi
,
S.
Goedecker
,
X.
Gonze
,
O.
Granas
,
E. K. U.
Gross
,
A.
Gulans
,
F.
Gygi
,
D. R.
Hamann
,
P. J.
Hasnip
,
N. A. W.
Holzwarth
,
D.
Iuşan
,
D. B.
Jochym
,
F.
Jollet
,
D.
Jones
,
G.
Kresse
,
K.
Koepernik
,
E.
Kucukbenli
,
Y. O.
Kvashnin
,
I. L. M.
Locht
,
S.
Lubeck
,
M.
Marsman
,
N.
Marzari
,
U.
Nitzsche
,
L.
Nordstrom
,
T.
Ozaki
,
L.
Paulatto
,
C. J.
Pickard
,
W.
Poelmans
,
M. I. J.
Probert
,
K.
Refson
,
M.
Richter
,
G.-M.
Rignanese
,
S.
Saha
,
M.
Scheffler
,
M.
Schlipf
,
K.
Schwarz
,
S.
Sharma
,
F.
Tavazza
,
P.
Thunstrom
,
A.
Tkatchenko
,
M.
Torrent
,
D.
Vanderbilt
,
M. J.
van Setten
,
V.
Van Speybroeck
,
J. M.
Wills
,
J. R.
Yates
,
G.-X.
Zhang
, and
S.
Cottenier
, “
Reproducibility in density functional theory calculations of solids
,”
Science
351
,
aad3000
(
2016
).
21.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
, “
Nonlinear ionic pseudopotentials in spin-density-functional calculations
,”
Phys. Rev. B
26
,
1738
1742
(
1982
).
22.
O. F.
Sankey
and
D. J.
Niklewski
, “
Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems
,”
Phys. Rev. B
40
,
3979
3995
(
1989
).
23.
T.
Ozaki
and
H.
Kino
, “
Efficient projector expansion for the ab initio LCAO method
,”
Phys. Rev. B
72
,
045121
(
2005
).
24.
D. R.
Bowler
,
J. S.
Baker
,
J. T. L.
Poulton
,
S. Y.
Mujahed
,
J.
Lin
,
S.
Yadav
,
Z.
Raza
, and
T.
Miyazaki
, “
Highly accurate local basis sets for large-scale DFT calculations in conquest
,”
Jpn. J. Appl. Phys., Part 1
58
,
100503
(
2019
).
25.
E.
Hernández
,
M. J.
Gillan
, and
C. M.
Goringe
, “
Linear-scaling density-functional-theory technique: The density-matrix approach
,”
Phys. Rev. B
53
,
7147
7157
(
1996
).
26.
E.
Hernández
and
M. J.
Gillan
, “
Self-consistent first-principles technique with linear scaling
,”
Phys. Rev. B
51
,
10157
10160
(
1995
).
27.
E.
Hernández
,
M. J.
Gillan
, and
C. M.
Goringe
, “
Basis functions for linear-scaling first-principles calculations
,”
Phys. Rev. B
55
,
13485
13493
(
1997
).
28.
A. S.
Torralba
,
M.
Todorović
,
V.
Brázdová
,
R.
Choudhury
,
T.
Miyazaki
,
M. J.
Gillan
, and
D. R.
Bowler
, “
Pseudo-atomic orbitals as basis sets for the O(N) DFT code CONQUEST
,”
J. Phys.:Condens. Matter
20
,
294206
(
2008
).
29.
A.
Nakata
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Efficient calculations with multisite local orbitals in a large-scale DFT code CONQUEST
,”
J. Chem. Theory Comput.
10
,
4813
(
2014
).
30.
A.
Nakata
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Optimized multi-site local orbitals in the large-scale DFT program CONQUEST
,”
Phys. Chem. Chem. Phys.
17
,
31427
(
2015
).
31.
M. J.
Rayson
, “
Rapid filtration algorithm to construct a minimal basis on the fly from a primitive Gaussian basis
,”
Comput. Phys. Commun.
181
,
1051
1056
(
2010
).
32.
C. A.
White
,
P.
Maslen
,
M. S.
Lee
, and
M.
Head-Gordon
, “
The tensor properties of energy gradients within a non-orthogonal basis
,”
Chem. Phys. Lett.
276
,
133
138
(
1997
).
33.

We note that the overlap matrix can be inverted without problem when using exact diagonalisation.

34.
M. S.
Lee
and
M.
Head-Gordon
, “
Polarized atomic orbitals for self-consistent field electronic structure calculations
,”
J. Chem. Phys.
107
,
9085
(
1997
).
35.
G.
Berghold
,
M.
Parrinello
, and
J.
Hutter
, “
Polarized atomic orbitals for linear scaling methods
,”
J. Chem. Phys.
116
,
1800
1810
(
2002
).
36.
D. R.
Bowler
,
I. J.
Bush
, and
M. J.
Gillan
, “
Practical methods for ab initio calculations on thousands of atoms
,”
Int. J. Quantum Chem.
77
,
831
(
2000
).
37.
N. D.
Woods
,
M. C.
Payne
, and
P. J.
Hasnip
, “
Computing the self-consistent field in Kohn–Sham density functional theory
,”
J. Phys.: Condens. Matter
31
,
453001
(
2019
).
38.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
(
1980
).
39.

As is common in the field, we use the term “exact diagonalisation” throughout the paper to indicate that the eigenstates and density matrix are found without search or approximation.

40.
L. S.
Blackford
,
J.
Choi
,
A.
Cleary
,
E.
D’Azevedo
,
J.
Demmel
,
I.
Dhillon
,
J.
Dongarra
,
S.
Hammarling
,
G.
Henry
,
A.
Petitet
,
K.
Stanley
,
D.
Walker
, and
R. C.
Whaley
, ScaLAPACK Users’ Guide,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
1997
.
41.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
, “
The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science
,”
J. Phys.: Condens. Matter
26
,
213201
(
2014
).
42.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
43.
M.
Methfessel
and
A. T.
Paxton
, “
High-precision sampling for Brillouin-zone integration in metals
,”
Phys. Rev. B
40
,
3616
(
1989
).
44.
X.-P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
, “
Density-matrix electronic-structure method with linear system-size scaling
,”
Phys. Rev. B
47
,
10891
10894
(
1993
).
45.
R. W.
Nunes
and
D.
Vanderbilt
, “
Generalization of the density-matrix method to a nonorthogonal basis
,”
Phys. Rev. B
50
,
17611
17614
(
1994
).
46.
A. H. R.
Palser
and
D. E.
Manolopoulos
, “
Canonical purification of the density matrix in electronic-structure theory
,”
Phys. Rev. B
58
,
12704
12711
(
1998
).
47.
D. R.
Bowler
and
M. J.
Gillan
, “
Density matrices in O(N) electronic structure calculations: Theory and applications
,”
Comput. Phys. Commun.
120
,
95
108
(
1999
).
48.
D. R.
Bowler
and
M. J.
Gillan
, “
Length-scale ill conditioning in linear-scaling DFT
,”
Comput. Phys. Commun.
112
,
103
111
(
1998
).
49.
A.
Nakata
,
Y.
Futamura
,
T.
Sakurai
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Efficient calculation of electronic structure using O(N) density functional theory
,”
J. Chem. Theory Comput.
13
,
4146
(
2017
).
50.
T.
Sakurai
and
H.
Sugiura
, “
A projection method for generalized eigenvalue problems using numerical integration
,”
J. Comput. Appl. Math.
159
,
119
128
(
2003
).
51.
T.
Sakurai
,
Y.
Futamura
, and
H.
Tadano
, “
Efficient parameter estimation and implementation of a contour integral-based eigensolver
,”
J. Algorithms Comput. Technol
7
,
249
269
(
2013
).
52.
I.
Yamazaki
,
H.
Tadano
,
T.
Sakurai
, and
T.
Ikegami
, “
Performance comparison of parallel eigensolvers based on a contour integral method and a Lanczos method
,”
Parallel Comput.
39
,
280
290
(
2013
).
53.
M.
Toyoda
and
T.
Ozaki
, “
Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives
,”
J. Chem. Phys.
130
,
124114
(
2009
).
54.
M.
Toyoda
and
T.
Ozaki
, “
LIBERI: Library for numerical evaluation of electron-repulsion integrals
,”
Comput. Phys. Commun.
181
,
1455
1463
(
2010
).
55.
J. T.
Fermann
and
E. F.
Valeev
, “
Libint: Machine-generated library for efficient evaluation of molecular integrals over Gaussians
,” freely available at http://libint.valeyev.net/ or one of the authors,
2003
.
56.
H.
Shang
,
Z.
Li
, and
J.
Yang
, “
Implementation of screened hybrid density functional for periodic systems with numerical atomic orbitals: Basis function fitting and integral screening
,”
J. Chem. Phys.
135
,
034110
(
2011
).
57.
X.
Qin
,
H.
Shang
,
H.
Xiang
,
Z.
Li
, and
J.
Yang
, “
HONPAS: A linear scaling open-source solution for large system simulations
,”
Int. J. Quantum Chem.
115
,
647
655
(
2015
).
58.
L.
Truflandier
,
T.
Miyazaki
, and
D. R.
Bowler
, “
Linear-scaling implementation of exact exchange using localized numerical orbitals and contraction reduction integrals
,” arXiv:1112.5989v2 (
2012
).
59.
D. J.
Wales
and
M. P.
Hodges
, “
Global minima of water clusters (H2O)n, n ≤ 21, described by an empirical potential
,”
Chem. Phys. Lett.
286
,
65
72
(
1998
).
60.
A.
Castro
,
A.
Rubio
, and
M. J.
Stott
, “
Solution of Poisson’s equation for finite systems using plane-wave methods
,”
Can. J. Phys.
81
,
1151
1164
(
2003
).
61.
M. R.
Jarvis
,
I. D.
White
,
R. W.
Godby
, and
M. C.
Payne
,
Phys. Rev. B
56
,
14972
14978
(
1997
).
62.
G. J.
Martyna
and
M. E.
Tuckerman
,
J. Chem. Phys.
110
,
2810
(
1999
).
63.
C. A.
Rozzi
,
D.
Varsano
,
A.
Marini
,
E. K. U.
Gross
, and
A.
Rubio
,
Phys. Rev. B
73
,
205119
(
2006
).
64.
I.
Dabo
,
B.
Kozinsky
,
N. E.
Singh-Miller
, and
N.
Marzari
,
Phys. Rev. B
77
,
115139
(
2008
).
65.
H.-S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
129
,
224108
(
2008
).
66.
M. A.
Watson
and
K.
Hirao
,
J. Chem. Phys.
129
,
184107
(
2008
).
67.
K.
Varga
,
Z.
Zhang
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
93
,
176403
(
2004
).
68.
L.
Genovese
,
T.
Deutsch
,
A.
Neelov
,
S.
Goedecker
, and
G.
Beylkin
,
J. Chem. Phys.
125
,
074105
(
2006
).
69.
L.
Genovese
,
T.
Deutsch
, and
S.
Goedecker
,
J. Chem. Phys.
127
,
054704
(
2007
).
70.
G.
Onida
,
L.
Reining
,
R. W.
Godby
,
R.
Del Sole
, and
W.
Andreoni
,
Phys. Rev. Lett.
75
,
818
821
(
1995
).
71.
P. E.
Blöchl
,
J. Chem. Phys.
103
,
7422
(
1995
).
72.
P. A.
Schultz
,
Phys. Rev. B
60
,
1551
1554
(
1999
).
73.
T.
Miyazaki
,
D. R.
Bowler
,
R.
Choudhury
, and
M. J.
Gillan
, “
Atomic force algorithms in density functional theory electronic-structure techniques based on local orbitals
,”
J. Chem. Phys.
121
,
6186
6194
(
2004
).
74.
A. S.
Torralba
,
D. R.
Bowler
,
T.
Miyazaki
, and
M. J.
Gillan
, “
Non-self-consistent density-functional theory exchange-correlation forces for GGA functionals
,”
J. Chem. Theory Comput.
5
,
1499
(
2009
).
75.
F.
Knuth
,
C.
Carbogno
,
V.
Atalla
,
V.
Blum
, and
M.
Scheffler
, “
All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals
,”
Comput. Phys. Commun.
190
,
33
50
(
2015
).
76.
O. H.
Nielsen
and
R. M.
Martin
, “
First-principles calculation of stress
,”
Phys. Rev. Lett.
50
,
697
700
(
1983
).
77.
O. H.
Nielsen
and
R. M.
Martin
, “
Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs
,”
Phys. Rev. B
32
,
3792
3805
(
1985
).
78.
O. H.
Nielsen
and
R. M.
Martin
, “
Quantum-mechanical theory of stress and force
,”
Phys. Rev. B
32
,
3780
3791
(
1985
).
79.
O. H.
Nielsen
and
R. M.
Martin
, “
Erratum: Quantum-mechanical theory of stress and force
,”
Phys. Rev. B
35
,
9308
(
1987
).
80.
S.
Ismail-Beigi
and
T. A.
Arias
, “
Locality of the density matrix in metals, semiconductors, and insulators
,”
Phys. Rev. Lett.
82
,
2127
2130
(
1999
).
81.
L.
He
and
D.
Vanderbilt
, “
Exponential decay properties of Wannier functions and related quantities
,”
Phys. Rev. Lett.
86
,
5341
5344
(
2001
).
82.
S. N.
Taraskin
,
D. A.
Drabold
, and
S. R.
Elliott
, “
Spatial decay of the single-particle density matrix in insulators: Analytic results in two and three dimensions
,”
Phys. Rev. Lett.
88
,
196405
(
2002
).
83.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
84.
D.
Packwood
,
J.
Kermode
,
L.
Mones
,
N.
Bernstein
,
J.
Woolley
,
N.
Gould
,
C.
Ortner
, and
G.
Csányi
, “
A universal preconditioner for simulating condensed phase materials
,”
J. Chem. Phys.
144
,
164109
(
2016
).
85.
M. V.
Fernández-Serra
,
E.
Artacho
, and
J. M.
Soler
, “
Model hessian for accelerating first-principles structure optimizations
,”
Phys. Rev. B
67
,
100101
(
2003
).
86.
A. M. N.
Niklasson
, “
Extended Born-Oppenheimer molecular dynamics
,”
Phys. Rev. Lett.
100
,
123004
(
2008
).
87.
A. M. N.
Niklasson
,
C. J.
Tymczak
, and
M.
Challacombe
, “
Time-reversible Born-Oppenheimer molecular dynamics
,”
Phys. Rev. Lett.
97
,
123001
(
2006
).
88.
A. M. N.
Niklasson
, “
Next generation extended Lagrangian first principles molecular dynamics
,”
J. Chem. Phys.
147
,
054103
(
2017
).
89.
M.
Arita
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Stable and efficient linear scaling first-principles molecular dynamics for 10000+ atoms
,”
J. Chem. Theory Comput.
10
,
5419
(
2014
).
90.
A. M. N.
Niklasson
,
P.
Steneteg
,
A.
Odell
,
N.
Bock
,
M.
Challacombe
,
C. J.
Tymczak
,
E.
Holmström
,
G.
Zheng
, and
V.
Weber
, “
Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation
,”
J. Chem. Phys.
130
,
214109
(
2009
).
91.
T.
Hirakawa
,
T.
Suzuki
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Canonical-ensemble extended Lagrangian Born–Oppenheimer molecular dynamics for the linear scaling density functional theory
,”
J. Phys.: Condens. Matter
29
,
405901
(
2017
).
92.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
, “
Isothermal-isobaric molecular dynamics using stochastic velocity rescaling
,”
J. Chem. Phys.
130
,
074101
(
2009
).
93.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
94.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
, “
Explicit reversible integrators for extended systems dynamics
,”
Mol. Phys.
87
,
1117
(
1996
).
95.
M.
Arita
,
S.
Arapan
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Large-scale DFT simulations with a linear-scaling DFT code CONQUEST on K-computer
,”
J. Adv. Simul. Sci. Eng.
1
,
87
97
(
2014
).
96.
H.
Meuer
,
E.
Strohmaier
,
J.
Dongarra
,
H.
Simon
, and
M.
Meuer
, Top 500 list,
2012
.
97.
C.
O’Rourke
,
S. Y.
Mujahed
,
C.
Kumarasinghe
,
T.
Miyazaki
, and
D. R.
Bowler
, “
Structural properties of silicon–germanium and germanium–silicon core–shell nanowires
,”
J. Phys.: Condens. Matter
30
,
465303
(
2018
).
98.
C.
Kumarasinghe
and
D. R.
Bowler
, “
DFT study of undoped and As-doped Si nanowires approaching the bulk limit
,”
J. Phys.: Condens. Matter
32
,
035304
(
2019
).
99.
T.
Miyazaki
,
D. R.
Bowler
,
M. J.
Gillan
, and
T.
Ohno
, “
The energetics of hut-cluster self-assembly in Ge/Si(001) from linear-scaling DFT calculations
,”
J. Phys. Soc. Jpn.
77
,
123706
(
2008
).
100.
Y.
Li
,
M.
Buerkle
,
G.
Li
,
A.
Rostamian
,
H.
Wang
,
Z.
Wang
,
D. R.
Bowler
,
T.
Miyazaki
,
L.
Xiang
,
Y.
Asai
,
G.
Zhou
, and
N.
Tao
, “
Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport
,”
Nat. Mater.
18
,
357
363
(
2019
).
101.
T.
Otsuka
,
T.
Miyazaki
,
T.
Ohno
,
D. R.
Bowler
, and
M. J.
Gillan
, “
Accuracy of order-N density-functional theory calculations on DNA systems using CONQUEST
,”
J. Phys.: Condens. Matter
20
,
294201
(
2008
).
102.
T.
Otsuka
,
M.
Taiji
,
D. R.
Bowler
, and
T.
Miyazaki
, “
Linear-scaling first-principles molecular dynamics of complex biological systems with the Conquest code
,”
Jpn. J. Appl. Phys., Part 1
55
,
1102B1
(
2016
).
103.
M.
Todorović
,
D. R.
Bowler
,
M. J.
Gillan
, and
T.
Miyazaki
, “
Density-functional theory study of gramicidin A ion channel geometry and electronic properties
,”
J. R. Soc. Interface
10
,
20130547
(
2013
).
104.
Y.-W.
Mo
,
D. E.
Savage
,
B. S.
Swartzentruber
, and
M. G.
Lagally
, “
Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001)
,”
Phys. Rev. Lett.
65
,
1020
1023
(
1990
).
105.
T.
Miyazaki
,
D. R.
Bowler
,
R.
Choudhury
, and
M. J.
Gillan
, “
Density functional calculations for Ge(105): Local basis sets and O(N) methods
,”
Phys. Rev. B
76
,
115327
(
2007
).
106.
T.
Hashimoto
,
Y.
Morikawa
, and
K.
Terakura
, “
Stability and electronic structure of Ge(105)1×2: A first-principles theoretical study
,”
Surf. Sci.
576
,
61
66
(
2005
).
107.
P.
Raiteri
,
D. B.
Migas
,
L.
Miglio
,
A.
Rastelli
, and
H.
von Känel
, “
Critical role of the surface reconstruction in the thermodynamic stability of {105}Ge pyramids on Si(001)
,”
Phys. Rev. Lett.
88
,
256103
(
2002
).
108.
S.
Arapan
,
D. R.
Bowler
, and
T.
Miyazaki
, “
A linear scaling DFT study of the growth of a new 105 facet layer on a Ge hut cluster
,” arXiv:1510.00526 (
2015
).
109.
M. R.
McKay
,
J. A.
Venables
, and
J.
Drucker
, “
Kinetically suppressed Ostwald ripening of Ge/Si (100) hut clusters
,”
Phys. Rev. Lett.
101
,
216104
(
2008
).
110.
T.
Miyazaki
, “
(Invited) large-scale DFT study of Ge/Si 3D nanoislands and core-shell nanowires
,”
ECS Trans.
86
,
269
279
(
2018
).
111.
C.
Thelander
,
P.
Agarwal
,
S.
Brongersma
,
J.
Eymery
,
L. F.
Feiner
,
A.
Forchel
,
M.
Scheffler
,
W.
Riess
,
B. J.
Ohlsson
,
U.
Gösele
, and
L.
Samuelson
, “
Nanowire-based one-dimensional electronics
,”
Mater. Today
9
,
28
35
(
2006
).
112.
W.
Lu
,
J.
Xiang
,
B. P.
Timko
,
Y.
Wu
, and
C. M.
Lieber
, “
One-dimensional hole gas in germanium/silicon nanowire heterostructures
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
10046
(
2005
).
113.
J.
Xiang
,
W.
Lu
,
Y.
Hu
,
Y.
Wu
,
H.
Yan
, and
C. M.
Lieber
, “
Ge/Si nanowire heterostructures as high-performance field-effect transistors
,”
Nature
441
,
489
493
(
2006
).
114.
N.
Fukata
,
M.
Mitome
,
T.
Sekiguchi
,
Y.
Bando
,
M.
Kirkham
,
J.-I.
Hong
,
Z. L.
Wang
, and
R. L.
Snyder
, “
Characterization of impurity doping and stress in Si/Ge and Ge/Si core–shell nanowires
,”
ACS Nano
6
,
8887
8895
(
2012
).
115.
J. S.
Baker
and
D. R.
Bowler
, “
First-principles soft-mode lattice dynamics of PbZr0.5Ti0.5O3 and shortcomings of the virtual crystal approximation
,”
Phys. Rev. B
100
,
224305
(
2019
).
116.
B.
Meyer
and
D.
Vanderbilt
, “
Ab initio study of ferroelectric domain walls in PbTiO3
,”
Phys. Rev. B
65
,
104111
(
2002
).
117.
M. J.
Gillan
,
D. R.
Bowler
,
A. S.
Torralba
, and
T.
Miyazaki
, “
Order-N first-principles calculations with the conquest code
,”
Comput. Phys. Commun.
177
,
14
18
(
2007
), part of special issue: Proceedings of the Conference on Computational Physics 2006.
118.
T.
Hirakawa
,
D. R.
Bowler
,
T.
Miyazaki
,
Y.
Morikawa
, and
L. A.
Truflandier
, “
Blue moon ensemble simulation of aquation free energy profiles applied to mono and bifunctional platinum anticancer drugs
,” arXiv:2003.01418 (
2020
).
119.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
120.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
121.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
(
1992
).
122.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
123.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
124.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
(
1984
).
You do not currently have access to this content.