We explicitly compute the non-equilibrium molecular dynamics of protons in the solid acid CsH2PO4 on the micrometer length scale via a multiscale Markov model: The molecular dynamics/matrix propagation (MDM) method. Within the MDM approach, the proton dynamics information of an entire molecular dynamics simulation can be condensed into a single M × M matrix (M is the number of oxygen atoms in the simulated system). Due to this drastic reduction in the complexity, we demonstrate how to increase the length and time scales in order to enable the simulation of inhomogeneities of CsH2PO4 systems at the nanometer scale. We incorporate explicit correlation of protonation dynamics with the protonation state of the neighboring proton sites and illustrate that this modification conserves the Markov character of the MDM method. We show that atomistic features such as the mean square displacement and the diffusion coefficient of the protons can be computed quantitatively from the matrix representation. Furthermore, we demonstrate the application potential of the scheme by computing the explicit dynamics of a non-equilibrium process in an 8 μm CsH2PO4 system during 5 ms.

1.
L.
Delle Site
, “
What is a multiscale problem in molecular dynamics?
,”
Entropy
16
,
23
40
(
2014
).
2.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Multiscale simulation of soft matter: From scale bridging to adaptive resolution
,”
Annu. Rev. Phys. Chem.
59
,
545
571
(
2008
).
3.
K.
Wendler
,
F.
Dommert
,
Y. Y.
Zhao
,
R.
Berger
,
C.
Holm
, and
L.
Delle Site
, “
Ionic liquids studied across different scales: A computational perspective
,”
Faraday Discuss.
154
,
111
132
(
2012
).
4.
J. A.
Morrone
,
R.
Zhou
, and
B. J.
Berne
, “
Molecular dynamics with multiple time scales: How to avoid pitfalls
,”
J. Chem. Theory Comput.
6
,
1798
1804
(
2010
).
5.
J. A.
Morrone
,
T. E.
Markland
,
M.
Ceriotti
, and
B. J.
Berne
, “
Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances
,”
J. Chem. Phys.
134
,
014103
(
2011
).
6.
A.
Perez
,
J. A.
Morrone
,
E.
Brini
,
J. L.
MacCallum
, and
K. A.
Dill
, “
Blind protein structure prediction using accelerated free-energy simulations
,”
Sci. Adv.
2
,
e1601274
(
2016
).
7.
G.
Tabacchi
,
C. J.
Mundy
,
J.
Hutter
, and
M.
Parrinello
, “
Classical polarizable force fields parametrized from ab initio calculations
,”
J. Chem. Phys.
117
,
1416
1433
(
2002
).
8.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
9.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
10.
B.
Nebgen
,
N.
Lubbers
,
J. S.
Smith
,
A. E.
Sifain
,
A.
Lokhov
,
O.
Isayev
,
A. E.
Roitberg
,
K.
Barros
, and
S.
Tretiak
, “
Transferable dynamic molecular charge assignment using deep neural networks
,”
J. Chem. Theory Comput.
14
,
4687
4698
(
2018
).
11.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
,
547
(
2018
).
12.
M.
Hellström
and
J.
Behler
, “
Concentration-dependent proton transfer mechanisms in aqueous NaOH solutions: From acceptor-driven to donor-driven and back
,”
J. Phys. Chem. Lett.
7
,
3302
3306
(
2016
).
13.
M.
Gastegger
,
C.
Kauffmann
,
J.
Behler
, and
P.
Marquetand
, “
Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes
,”
J. Chem. Phys.
144
,
194110
(
2016
).
14.
V.
Quaranta
,
M.
Hellström
, and
J.
Behler
, “
Proton-transfer mechanisms at the water–ZnO interface: The role of presolvation
,”
J. Phys. Chem. Lett.
8
,
1476
1483
(
2017
).
15.
L. J.
LaBerge
and
J. C.
Tully
, “
A rigorous procedure for combining molecular dynamics and Monte Carlo simulation algorithms
,”
Chem. Phys.
260
,
183
191
(
2000
).
16.
E. C.
Neyts
and
A.
Bogaerts
, “
Combining molecular dynamics with Monte Carlo simulations: Implementations and applications
,”
Theor. Chem. Acc.
132
,
1320
(
2012
).
17.
F.
Noé
,
J.
Chodera
,
G.
Bowman
,
V.
Pande
, and
F.
Noé
,
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, Advances in Experimental Medicine and Biology Vol. 797 (
Springer
,
2014
).
18.
G. R.
Bowman
,
E. R.
Bolin
,
K. M.
Hart
,
B. C.
Maguire
, and
S.
Marqusee
, “
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
2734
2739
(
2015
).
19.
B. E.
Husic
and
V. S.
Pande
, “
Markov state models: From an art to a science
,”
J. Am. Chem. Soc.
140
,
2386
2396
(
2018
).
20.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
, “
Everything you wanted to know about Markov State Models but were afraid to ask
,”
Methods
52
,
99
105
(
2010
).
21.
C.
Schütte
and
M.
Sarich
, “
A critical appraisal of Markov state models
,”
Eur. Phys. J.: Spec. Top.
224
,
2445
2462
(
2015
).
22.
C. R.
Schwantes
,
R. T.
McGibbon
, and
V. S.
Pande
, “
Perspective: Markov models for long-timescale biomolecular dynamics
,”
J. Chem. Phys.
141
,
090901
(
2014
).
23.
B. M.
Forrest
and
U. W.
Suter
, “
Hybrid Monte Carlo simulations of dense polymer systems
,”
J. Chem. Phys.
101
,
2616
2629
(
1994
).
24.
D. G.
Gromov
and
J. J.
de Pablo
, “
Structure of binary polymer blends: Multiple time step hybrid Monte Carlo simulations and self-consistent integral-equation theory
,”
J. Chem. Phys.
103
,
8247
8256
(
1995
).
25.
A.
Irbäck
, “
Hybrid Monte Carlo simulation of polymer chains
,”
J. Chem. Phys.
101
,
1661
1667
(
1994
).
26.
D. W.
Heermann
and
L.
Yixue
, “
A global-update simulation method for polymer systems
,”
Macromol. Chem. Phys.
2
,
299
308
(
1993
).
27.
I.
Martin-Bragado
,
R.
Borges
,
J. P.
Balbuena
,
M.
Jaraiz
, “
Kinetic Monte Carlo simulation for semiconductor processing: A review
,”
Prog. Mater. Sci.
92
,
1
32
(
2018
).
28.
G.
Betz
and
W.
Husinsky
, “
A combined molecular dynamics and kinetic Monte Carlo calculation to study sputter erosion and beam assisted deposition
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
193
,
352
358
(
2002
).
29.
A.
Ghoufi
and
G.
Maurin
, “
Hybrid Monte Carlo simulations combined with a phase mixture model to predict the structural transitions of a porous metal–organic framework material upon adsorption of guest molecules
,”
J. Phys. Chem. C
114
,
6496
6502
(
2010
).
30.
A. A.
Knizhnik
,
A. A.
Bagaturyants
,
I. V.
Belov
,
B. V.
Potapkin
, and
A. A.
Korkin
, “
An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si(100) surface
,”
Comput. Mater. Sci.
24
,
128
132
(
2002
).
31.
U. H. E.
Hansmann
and
Y.
Okamoto
, “
New Monte Carlo algorithms for protein folding
,”
Curr. Opin. Struct. Biol.
9
,
177
183
(
1999
).
32.
E. K.
Peter
and
J.-E.
Shea
, “
A hybrid MD-kMC algorithm for folding proteins in explicit solvent
,”
Phys. Chem. Chem. Phys.
16
,
6430
6440
(
2014
).
33.
H.
Zhang
, “
A new hybrid Monte Carlo algorithm for protein potential function test and structure refinement
,”
Proteins: Struct., Funct., Genet.
34
,
464
471
(
1999
).
34.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
, “
Markov models of molecular kinetics: Generation and validation
,”
J. Chem. Phys.
134
,
174105
(
2011
).
35.
F.
Nüske
,
B. G.
Keller
,
G.
Pérez-Hernández
,
A. S. J. S.
Mey
, and
F.
Noé
, “
Variational approach to molecular kinetics
,”
J. Chem. Theory Comput.
10
,
1739
1752
(
2014
).
36.
A. M.
Berezhkovskii
and
A.
Szabo
, “
Committors, first-passage times, fluxes, Markov states, milestones, and all that
,”
J. Chem. Phys.
150
,
054106
(
2019
).
37.
F.
Noé
and
E.
Rosta
, “
Markov models of molecular kinetics
,”
J. Chem. Phys.
151
,
190401
(
2019
).
38.
M.
Dibak
,
M. J.
del Razo
,
D.
De Sancho
,
C.
Schütte
, and
F.
Noé
, “
MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations
,”
J. Chem. Phys.
148
,
214107
(
2018
).
39.
B. G.
Keller
,
J.-H.
Prinz
, and
F.
Noé
, “
Markov models and dynamical fingerprints: Unraveling the complexity of molecular kinetics
,”
Chem. Phys.
396
,
92
107
(
2012
), special issue: Experimental and theoretical studies of protein dynamics and function: From femtoseconds to milliseconds.
40.
B. G.
Keller
,
A.
Kobitski
,
A.
Jäschke
,
G. U.
Nienhaus
, and
F.
Noé
, “
Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models
,”
J. Am. Chem. Soc.
136
,
4534
4543
(
2014
).
41.
F.
Nüske
,
H.
Wu
,
J.-H.
Prinz
,
C.
Wehmeyer
,
C.
Clementi
, and
F.
Noé
, “
Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias
,”
J. Chem. Phys.
146
,
094104
(
2017
).
42.
C.
Schütte
,
F.
Noé
,
J.
Lu
,
M.
Sarich
, and
E.
Vanden-Eijnden
, “
Markov state models based on milestoning
,”
J. Chem. Phys.
134
,
204105
(
2011
).
43.
B.
Trendelkamp-Schroer
,
H.
Wu
,
F.
Paul
, and
F.
Noé
, “
Estimation and uncertainty of reversible Markov models
,”
J. Chem. Phys.
143
,
174101
(
2015
).
44.
F.
Vitalini
,
A. S. J. S.
Mey
,
F.
Noé
, and
B. G.
Keller
, “
Dynamic properties of force fields
,”
J. Chem. Phys.
142
,
084101
(
2015
).
45.
H.
Wu
,
F.
Paul
,
C.
Wehmeyer
, and
F.
Noé
, “
Multiensemble Markov models of molecular thermodynamics and kinetics
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E3221
E3230
(
2016
).
46.
E.
Hruska
,
J. R.
Abella
,
F.
Nüske
,
L. E.
Kavraki
, and
C.
Clementi
, “
Quantitative comparison of adaptive sampling methods for protein dynamics
,”
J. Chem. Phys.
149
,
244119
(
2018
).
47.
U.
Sengupta
,
M.
Carballo-Pacheco
, and
B.
Strodel
, “
Automated Markov state models for molecular dynamics simulations of aggregation and self-assembly
,”
J. Chem. Phys.
150
,
115101
(
2019
).
48.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
19016
(
2009
).
49.
T. J.
Lane
,
G. R.
Bowman
,
K.
Beauchamp
,
V. A.
Voelz
, and
V. S.
Pande
, “
Markov state model reveals folding and functional dynamics in ultra-long MD trajectories
,”
J. Am. Chem. Soc.
133
,
18413
18419
(
2011
).
50.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
51.
N.
Stanley
,
S.
Esteban-Martín
, and
G.
De Fabritiis
, “
Kinetic modulation of a disordered protein domain by phosphorylation
,”
Nat. Commun.
5
,
5272
(
2014
).
52.
I.
Buch
,
T.
Giorgino
, and
G.
De Fabritiis
, “
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
10184
10189
(
2011
).
53.
M.
Held
,
P.
Metzner
,
J.-H.
Prinz
, and
F.
Noé
, “
Mechanisms of protein–ligand association and its modulation by protein mutations
,”
Biophys. J.
100
,
701
710
(
2011
).
54.
D.-A.
Silva
,
G. R.
Bowman
,
A.
Sosa-Peinado
, and
X.
Huang
, “
A role for both conformational selection and induced fit in ligand binding by the LAO protein
,”
PLoS Comput. Biol.
7
,
1
11
(
2011
).
55.
G. R.
Bowman
and
P. L.
Geissler
, “
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
11681
11686
(
2012
).
56.
N.
Plattner
and
F.
Noé
, “
Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models
,”
Nat. Commun.
6
,
7653
(
2015
).
57.
D.
Chakraborty
and
D. J.
Wales
, “
Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling
,”
J. Chem. Phys.
150
,
125101
(
2019
).
58.
G.
Pinamonti
,
F.
Paul
,
F.
Noé
,
A.
Rodriguez
, and
G.
Bussi
, “
The mechanism of RNA base fraying: Molecular dynamics simulations analyzed with core-set Markov state models
,”
J. Chem. Phys.
150
,
154123
(
2019
).
59.
J. A.
Morrone
and
M. E.
Tuckerman
, “
Ab initio molecular dynamics study of proton mobility in liquid methanol
,”
J. Chem. Phys.
117
,
4403
4413
(
2002
).
60.
J. A.
Morrone
,
K. E.
Haslinger
, and
M. E.
Tuckerman
, “
Ab initio molecular dynamics simulation of the structure and proton transport dynamics of methanol–water solutions
,”
J. Phys. Chem. B
110
,
3712
3720
(
2006
).
61.
C.
Dreßler
,
G.
Kabbe
, and
D.
Sebastiani
, “
Insight from atomistic simulations of protonation dynamics at the nanoscale
,”
Fuel Cells
16
,
682
694
(
2016
).
62.
R.
Vuilleumier
and
D.
Borgis
, “
Proton conduction: Hopping along hydrogen bonds
,”
Nat. Chem.
4
,
432
(
2012
).
63.
R. A.
Krueger
,
L.
Vilčiauskas
,
J.-P.
Melchior
,
G.
Bester
, and
K.-D.
Kreuer
, “
Mechanism of efficient proton conduction in diphosphoric acid elucidated via first-principles simulation and NMR
,”
J. Phys. Chem. B
119
,
15866
15875
(
2015
).
64.
T. C.
Berkelbach
,
H.-S.
Lee
, and
M. E.
Tuckerman
, “
Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: A first-principles molecular dynamics study
,”
Phys. Rev. Lett.
103
,
238302
(
2009
).
65.
L.
Vilčiauskas
,
M. E.
Tuckerman
,
G.
Bester
,
S. J.
Paddison
, and
K.-D.
Kreuer
, “
The mechanism of proton conduction in phosphoric acid
,”
Nat. Chem.
4
,
461
(
2012
).
66.
R.
Devanathan
,
N.
Idupulapati
,
M. D.
Baer
,
C. J.
Mundy
, and
M.
Dupuis
, “
Ab initio molecular dynamics simulation of proton hopping in a model polymer membrane
,”
J. Phys. Chem. B
117
,
16522
16529
(
2013
).
67.
V.-A.
Glezakou
,
M.
Dupuis
, and
C. J.
Mundy
, “
Acid/base equilibria in clusters and their role in proton exchange membranes: Computational insight
,”
Phys. Chem. Chem. Phys.
9
,
5752
5760
(
2007
).
68.
M. D.
Baer
,
J. L.
Fulton
,
M.
Balasubramanian
,
G. K.
Schenter
, and
C. J.
Mundy
, “
Persistent ion pairing in aqueous hydrochloric acid
,”
J. Phys. Chem. B
118
,
7211
7220
(
2014
).
69.
M. D.
Baer
,
D. J.
Tobias
, and
C. J.
Mundy
, “
Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. C
118
,
29412
29420
(
2014
).
70.
J.
Schmidt
,
J.
VandeVondele
,
I.-F. W.
Kuo
,
D.
Sebastiani
,
J. I.
Siepmann
,
J.
Hutter
, and
C. J.
Mundy
, “
Isobaric–isothermal molecular dynamics simulations utilizing density functional theory: An assessment of the structure and density of water at near-ambient conditions
,”
J. Phys. Chem. B
113
,
11959
11964
(
2009
).
71.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
, “
Towards an assessment of the accuracy of density functional theory for first principles simulations of water
,”
J. Chem. Phys.
120
,
300
311
(
2004
).
72.
E.
Schwegler
,
J. C.
Grossman
,
F.
Gygi
, and
G.
Galli
, “
Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II
,”
J. Chem. Phys.
121
,
5400
5409
(
2004
).
73.
C.
Dreßler
,
G.
Kabbe
,
M.
Brehm
, and
D.
Sebastiani
, “
Dynamical matrix propagator scheme for large-scale proton dynamics simulations
,”
J. Chem. Phys.
152
,
114114
(
2020
).
74.
G.
Kabbe
,
C.
Wehmeyer
, and
D.
Sebastiani
, “
A coupled molecular dynamics/kinetic Monte Carlo approach for protonation dynamics in extended systems
,”
J. Chem. Theory Comput.
10
,
4221
(
2014
).
75.
G.
Kabbe
,
C.
Dreßler
, and
D.
Sebastiani
, “
Toward realistic transfer rates within the coupled molecular dynamics/lattice Monte Carlo approach
,”
J. Phys. Chem. C
120
,
19905
19912
(
2016
).
76.
C.
Dreßler
,
G.
Kabbe
, and
D.
Sebastiani
, “
Proton conductivity in hydrogen phosphate/sulfates from a coupled molecular dynamics/lattice Monte Carlo (cMD/LMC) approach
,”
J. Phys. Chem. C
120
,
19913
19922
(
2016
).
77.
G.
Kabbe
,
C.
Dreßler
, and
D.
Sebastiani
, “
Proton mobility in aqueous systems: Combining ab initio accuracy with millisecond timescales
,”
Phys. Chem. Chem. Phys.
19
,
28604
28609
(
2017
).
78.
H.-S.
Lee
and
M. E.
Tuckerman
, “
The structure and proton transport mechanisms in the superprotonic phase of CsH2PO4: An ab initio molecular dynamics study
,”
J. Phys. Chem. C
112
,
9917
9930
(
2008
).
79.
C.
Wehmeyer
,
M.
Schrader
,
D.
Andrienko
, and
D.
Sebastiani
, “
Water-free proton conduction in hexakis(p-phosphonatophenyl)benzene nanochannels
,”
J. Phys. Chem. C
117
,
12366
12372
(
2013
).
80.
A. I.
Baranov
,
V. P.
Khiznichenko
, and
L. A.
Shuvalov
, “
High temperature phase transitions and proton conductivity in some kdp-family crystals
,”
Ferroelectrics
100
,
135
141
(
1989
).
81.
S. M.
Haile
,
H.
Liu
, and
R. A.
Secco
, “
High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions
,”
Chem. Mater.
15
,
727
736
(
2003
).
82.
E.
Ortiz
,
R. A.
Vargas
, and
B.-E.
Mellander
, “
On the high-temperature phase transitions of CsH2PO4: A polymorphic transition? A transition to a superprotonic conducting phase?
,”
J. Chem. Phys.
110
,
4847
4853
(
1999
).
83.
K.
Yamada
,
T.
Sagara
,
Y.
Yamane
,
H.
Ohki
, and
T.
Okuda
, “
Superprotonic conductor CsH2PO4 studied by 1H, 31P NMR and X-ray diffraction
,”
Solid State Ionics
175
,
557
562
(
2004
), special issue: Fourteenth International Conference on Solid State Ionics.
84.
J.
Otomo
,
N.
Minagawa
,
C.-j.
Wen
,
K.
Eguchi
, and
H.
Takahashi
, “
Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres
,”
Solid State Ionics
156
,
357
369
(
2003
).
85.
R. C.
Desai
and
M.
Nelkin
, “
Atomic motions in a rigid sphere gas as a problem in neutron transport
,”
Nucl. Sci. Eng.
24
,
142
152
(
1966
).
86.
O. J.
Eder
, “
The velocity autocorrelation function and the diffusion coefficient for a dilute hard sphere gas
,”
J. Chem. Phys.
66
,
3866
3870
(
1977
).
87.
D.
Marx
,
A.
Chandra
, and
M. E.
Tuckerman
, “
Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton
,”
Chem. Rev.
110
,
2174
2216
(
2010
).
88.
D.
Marx
, “
Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations
,”
ChemPhysChem
7
,
1848
1870
(
2006
).
89.
M. E.
Tuckerman
,
A.
Chandra
, and
D.
Marx
, “
A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases
,”
J. Chem. Phys.
133
,
124108
(
2010
).
90.
A.
Chandra
,
M. E.
Tuckerman
, and
D.
Marx
, “
Connecting solvation shell structure to proton transport kinetics in hydrogen–bonded networks via population correlation functions
,”
Phys. Rev. Lett.
99
,
145901
(
2007
).
91.
M.
Wagner
,
C.
Dreßler
,
F. P.
Lohmann-Richters
,
K.
Hanus
,
D.
Sebastiani
,
A.
Varga
, and
B.
Abel
, “
Mechanism of ion conductivity through polymer-stabilized CsH2PO4 nanoparticular layers from experiment and theory
,”
J. Mater. Chem. A
7
,
27367
27376
(
2019
).
92.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
cp2k:atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
93.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
94.
J.
VandeVondele
and
J.
Hutter
, “
An efficient orbital transformation method for electronic structure calculations
,”
J. Chem. Phys.
118
,
4365
4369
(
2003
).
95.
Y.
Zhang
and
W.
Yang
, “
Comment on “generalized gradient approximation made simple”
,”
Phys. Rev. Lett.
80
,
890
(
1998
).
96.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
, “
Restoring the density-gradient expansion for exchange in solids and surfaces
,”
Phys. Rev. Lett.
100
,
136406
(
2008
).
97.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
98.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
99.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
100.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
101.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
3662
(
1998
).
102.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
103.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
104.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
105.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
106.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1970
).
107.
A.
Ishikawa
,
H.
Maekawa
,
T.
Yamamura
,
Y.
Kawakita
,
K.
Shibata
, and
M.
Kawai
,
Solid State Ionics
179
,
2345
2349
(
2008
).
You do not currently have access to this content.