The application of predictive and reliable modeling techniques for the simulation of charge transport in functional materials is an essential step for the development of advanced platforms for electronics, optoelectronics, and photovoltaics. In this context, kinetic Monte Carlo (KMC) methods have emerged as a valuable tool, especially for the simulation of systems where charge transport can be described by the hopping of charge carriers across localized quantum states, as, for example, in organic semiconductor materials. The accuracy, computational efficiency, and reliability of KMC simulations of charge transport, however, crucially depend on the methods and approximations used to evaluate electrostatic interactions arising from the distribution of charges in the system. The long-range nature of Coulomb interactions and the need to simulate large model systems to capture the details of charge transport phenomena in complex devices lead, typically, to a computational bottleneck, which hampers the application of KMC methods. Here, we propose and assess computational schemes for the evaluation of electrostatic interactions in KMC simulations of charge transport based on the locality of the charge redistribution in the hopping regime. The methods outlined in this work provide an overall accuracy that outperforms typical approaches for the evaluation of electrostatic interactions in KMC simulations at a fraction of the computational cost. In addition, the computational schemes proposed allow a spatial decomposition of the evaluation of Coulomb interactions, leading to an essentially linear scaling of the computational load with the size of the system.

1.
C.
Zhang
,
P.
Chen
, and
W.
Hu
,
Small
12
,
1252
(
2016
).
2.
A.
Facchetti
,
Nat. Mater.
12
,
598
(
2013
).
3.
4.
S.
Ogawa
,
Organic Electronics Materials and Devices
, edited by
S.
Ogawa
(
Springer Japan
,
Tokyo
,
2015
), pp.
1
245
.
5.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
6.
N.
Tessler
,
Y.
Preezant
,
N.
Rappaport
, and
Y.
Roichman
,
Adv. Mater.
21
,
2741
(
2009
).
7.
Y.
Shirota
and
H.
Kageyama
,
Chem. Rev.
107
,
953
(
2007
).
8.
V.
Ambegaokar
,
B. I.
Halperin
, and
J. S.
Langer
,
Phys. Rev. B
4
,
2612
(
1971
).
9.
Y.
Olivier
,
V.
Lemaur
,
J. L.
Brédas
, and
J.
Cornil
,
J. Phys. Chem. A
110
,
6356
(
2006
).
10.
H.
Bässler
,
Phys. Status Solidi (B)
175
,
15
(
1993
).
11.
D.
Kipp
and
V.
Ganesan
,
J. Appl. Phys.
113
,
234502
(
2013
).
12.
P. M.
Baidya
,
K.
Bayat
,
M.
Biesecker
, and
M.
Farrokh Baroughi
,
Appl. Phys. Lett.
103
,
063305
(
2013
).
13.
J. J.
Van Der Holst
,
M. A.
Uijttewaal
,
R.
Balasubramanian
,
R.
Coehoorn
,
P. A.
Bobbert
,
G. A.
De Wijs
, and
R. A.
De Groot
,
Phys. Rev. B
79
,
085203
(
2009
).
14.
H.
Li
and
J.-L.
Bredas
,
Adv. Funct. Mater.
28
,
1801460
(
2018
).
15.
H.
Li
,
L.
Duan
,
D.
Zhang
,
G.
Dong
,
J.
Qiao
,
L.
Wang
, and
Y.
Qiu
,
J. Phys. Chem. C
118
,
6052
(
2014
).
16.
A.
Lorenzoni
,
M.
Muccini
, and
F.
Mercuri
,
RSC Adv.
5
,
11797
(
2015
).
17.
H.
Li
,
Y.
Li
,
H.
Li
, and
J.-L.
Brédas
,
Adv. Funct. Mater.
27
,
1605715
(
2017
).
18.
F.
Liu
,
H.
Van Eersel
,
P. A.
Bobbert
, and
R.
Coehoorn
,
Phys. Rev. Appl.
10
,
054007
(
2018
).
19.
R. G.
Kimber
,
E. N.
Wright
,
S. E.
O’Kane
,
A. B.
Walker
, and
J. C.
Blakesley
,
Phys. Rev. B
86
,
235206
(
2012
).
20.
M.
Baldoni
,
A.
Lorenzoni
,
A.
Pecchia
, and
F.
Mercuri
,
Phys. Chem. Chem. Phys.
20
,
28393
(
2018
).
21.
A.
Lorenzoni
,
A.
Mosca Conte
,
A.
Pecchia
, and
F.
Mercuri
,
Nanoscale
10
,
9376
(
2018
).
22.
J. A.
Anderson
,
E.
Jankowski
,
T. L.
Grubb
,
M.
Engel
, and
S. C.
Glotzer
,
J. Comput. Phys.
254
,
27
(
2013
).
23.
24.
J.
Stephan
,
S.
Schrader
, and
L.
Brehmer
,
Synth. Met.
111-112
,
353
(
2000
).
25.
P.
Kordt
and
D.
Andrienko
,
J. Chem. Theory Comput.
12
,
36
(
2016
).
26.
L.
Demeyu
,
S.
Stafström
, and
M.
Bekele
,
Phys. Rev. B
76
,
155202
(
2007
).
27.
J. J.
Van Der Holst
,
F. W.
Van Oost
,
R.
Coehoorn
, and
P. A.
Bobbert
,
Phys. Rev. B
83
,
085206
(
2011
).
28.
H.
Li
and
J.-L.
Brédas
,
J. Phys. Chem. Lett.
8
,
2507
(
2017
).
29.
P. K.
Watkins
,
A. B.
Walker
, and
G. L. B.
Verschoor
,
Nano Lett.
5
,
1814
(
2005
).
30.
F.
Liu
,
H.
Van Eersel
,
B.
Xu
,
J. G.
Wilbers
,
M. P.
De Jong
,
W. G.
Van Der Wiel
,
P. A.
Bobbert
, and
R.
Coehoorn
,
Phys. Rev. B
96
,
205203
(
2017
).
31.
L.
Meng
,
D.
Wang
,
Q.
Li
,
Y.
Yi
,
J.-L.
Brédas
,
Z.
Shuai
,
J.-L.
Brédas
, and
Z.
Shuai
,
J. Chem. Phys.
134
,
124102
(
2011
).
32.
R.
Coehoorn
and
P. A.
Bobbert
,
Phys. Status Solidi (A)
209
,
2354
(
2012
).
33.
J.
Zhou
,
Y. C.
Zhou
,
J. M.
Zhao
,
C. Q.
Wu
,
X. M.
Ding
, and
X. Y.
Hou
,
Phys. Rev. B
75
,
132202
(
2007
).
34.
R. A.
Marsh
,
C.
Groves
, and
N. C.
Greenham
,
J. Appl. Phys.
101
,
083509
(
2007
).
35.
T.
Albes
,
B.
Popescu
,
D.
Popescu
,
F.
Arca
, and
P.
Lugli
, in
2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO)
(
IEEE
,
2014
), p.
1023
.
36.
S.
Barraud
,
P.
Dollfus
,
S.
Galdin
, and
P.
Hesto
,
Solid-State Electron.
46
,
1061
(
2002
).
37.
T. A.
Madison
,
A. G.
Gagorik
, and
G. R.
Hutchison
,
J. Phys. Chem. C
116
,
11852
(
2012
).
38.
L.
Meng
,
Y.
Shang
,
Q.
Li
,
Y.
Li
,
X.
Zhan
,
Z.
Shuai
,
R. G. E.
Kimber
, and
A. B.
Walker
,
J. Phys. Chem. B
114
,
36
(
2010
).
39.
M. D.
Hanwell
,
T. A.
Madison
, and
G. R.
Hutchison
,
J. Phys. Chem. C
114
,
20417
(
2010
).
40.
M.
Casalegno
,
G.
Raos
, and
R.
Po
,
J. Chem. Phys.
132
,
094705
(
2010
).
41.
N. J.
van der Kaap
and
L. J. A.
Koster
,
J. Comput. Phys.
307
,
321
(
2016
).
42.
G. L. C.
Paulus
,
M.-H.
Ham
, and
M. S.
Strano
,
Nanotechnology
23
,
095402
(
2012
).
43.
K.
Kohary
,
H.
Cordes
,
S. D.
Baranovskii
,
P.
Thomas
,
S.
Yamasaki
,
F.
Hensel
, and
J.-H. H.
Wendorff
,
Phys. Rev. B
63
,
094202
(
2001
).
44.
C.
Miller
and
E.
Abrahams
,
Phys. Rev.
10
,
745
(
1960
).
45.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
46.
D.
Wolf
,
P.
Keblinski
,
S. R.
Phillpot
, and
J.
Eggebrecht
,
J. Chem. Phys.
110
,
8254
(
1999
).
47.
F.
Yang
and
S. R.
Forrest
,
ACS Nano
2
,
1022
(
2008
).
48.
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
1996
).
50.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
2010
).
51.
52.
M. R. S.
Pinches
,
D. J.
Tildesley
, and
W.
Smith
,
Mol. Simul.
6
,
51
(
1991
).
53.
S.
Torabi
,
F.
Jahani
,
I.
Van Severen
,
C.
Kanimozhi
,
S.
Patil
,
R. W. A.
Havenith
,
R. C.
Chiechi
,
L.
Lutsen
,
D. J. M.
Vanderzande
,
T. J.
Cleij
,
J. C.
Hummelen
, and
L. J. A.
Koster
,
Adv. Funct. Mater.
25
,
150
(
2015
).
54.
H. E.
Katz
and
Z.
Bao
,
J. Phys. Chem. B
31
,
671
(
2000
).
55.
A. G.
Gagorik
,
J. W.
Mohin
,
T.
Kowalewski
, and
G. R.
Hutchison
,
J. Phys. Chem. Lett.
4
,
36
(
2013
).
56.
P.
Kordt
,
S.
Stodtmann
,
A.
Badinski
,
M.
Al Helwi
,
C.
Lennartz
, and
D.
Andrienko
,
Phys. Chem. Chem. Phys.
17
,
22778
(
2015
).
57.
B.
Baumeier
,
F.
May
,
C.
Lennartz
, and
D.
Andrienko
,
J. Mater. Chem.
22
,
10971
(
2012
).
58.
P.
Kordt
,
J. J. M.
Van Der Holst
,
M.
Al Helwi
,
W.
Kowalsky
,
F.
May
,
A.
Badinski
,
C.
Lennartz
, and
D.
Andrienko
,
Adv. Funct. Mater.
25
,
1955
(
2015
).
59.
N.
Vukmirović
and
L. W.
Wang
,
Nano Lett.
9
,
3996
(
2009
).
60.
R.
Quey
,
P. R.
Dawson
, and
F.
Barbe
,
Comput. Methods Appl. Mech. Eng.
200
,
1729
(
2011
).
61.
A.
Lorenzoni
,
M.
Muccini
, and
F.
Mercuri
,
J. Phys. Chem. C
121
,
21857
(
2017
).
62.
A.
Sharma
,
F.
van Oost
,
M.
Kemerink
, and
P.
Bobbert
,
Phys. Rev. B
85
,
235302
(
2012
).
63.
F.
Nestler
,
M.
Pippig
, and
D.
Potts
,
J. Comput. Phys.
285
,
280
(
2015
).
You do not currently have access to this content.