The production of solar hydrogen with a silicon based water splitting device is a promising future technology, and silicon-based metal–insulator–semiconductor (MIS) electrodes have been proposed as suitable architectures for efficient photocathodes based on the electronic properties of the MIS structures and the catalytic properties of the metals. In this paper, we demonstrate that the interfaces between the metal and oxide of laterally patterned MIS electrodes may strongly enhance the catalytic activity of the electrode compared to bulk metal surfaces. The employed electrodes consist of well-defined, large-area arrays of gold structures of various mesoscopic sizes embedded in a silicon oxide support on silicon. We demonstrate that the activity of these electrodes for hydrogen evolution reaction (HER) increases with an increase in gold/silicon oxide boundary length in both acidic and alkaline media, although the enhancement of the HER rate in alkaline electrolytes is considerably larger than in acidic electrolytes. Electrodes with the largest interfacial length of gold/silicon oxide exhibited a 10-times larger HER rate in alkaline electrolytes than those with the smallest interfacial length. The data suggest that at the metal/silicon oxide boundaries, alkaline HER is enhanced through a bifunctional mechanism, which we tentatively relate to the laterally structured electrode geometry and to positive charges present in silicon oxide: Both properties change locally the interfacial electric field at the gold/silicon oxide boundary, which, in turn, facilitates a faster transport of hydroxide ions away from the electrode/electrolyte interface in alkaline solution. This mechanism boosts the alkaline HER activity of p-type silicon based photoelectrodes close to their HER activity in acidic electrolytes.

1.
J.
Ogden
and
R.
Schroder
,
Solar Hydrogen: Moving Beyond Fossil Fuels
(
World Resources Institute
,
1989
).
2.
J.
Nowotny
,
C.
Sorrell
,
L.
Sheppard
, and
T.
Bak
, “
Solar-hydrogen: Environmentally safe fuel for the future
,”
Int. J. Hydrogen Energy
30
,
521
544
(
2005
).
3.
A.
Nakamura
,
Y.
Ota
,
K.
Koike
,
Y.
Hidaka
,
K.
Nishioka
,
M.
Sugiyama
, and
K.
Fujii
, “
A 24.4% solar to hydrogen energy conversion efficiency by combining concentratorphotovoltaic modules and electrochemical cells
,”
Appl. Phys. Express
8
,
107101
(
2015
).
4.
A.
Paracchino
,
V.
Laporte
,
K.
Sivula
,
M.
Grätzel
, and
E.
Thimsen
, “
Highly active oxide photocathode for photoelectrochemical water reduction
,”
Nat. Mater.
10
,
456
461
(
2011
).
5.
F.
Abdi
,
L.
Han
,
A.
Smets
,
M.
Zeman
,
B.
Dam
, and
R.
van de Krol
, “
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
,”
Nat. Commun.
4
,
2195
(
2013
).
6.
O.
Khaselev
and
J.
Turner
, “
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
,”
Science
280
,
425
427
(
1998
).
7.
T.
Deutsch
,
C.
Koval
, and
J.
Turner
, “
III–V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN
,”
J. Phys. Chem. B
110
,
25297
25307
(
2006
).
8.
J.
McKone
,
E.
Warren
,
M.
Bierman
,
S.
Boettcher
,
B.
Brunschwig
,
N.
Lewis
, and
H.
Gray
, “
Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
,”
Energy Environ. Sci.
4
,
3573
(
2011
).
9.
S.
Boettcher
,
E.
Warren
,
M.
Putnam
,
E.
Santori
,
D.
Turner-Evans
,
M.
Kelzenberg
,
M.
Walter
,
J.
McKone
,
B.
Brunschwig
,
H.
Atwater
, and
N.
Lewis
, “
Photoelectrochemical hydrogen evolution using Si microwire arrays
,”
J. Am. Chem. Soc.
133
,
1216
1219
(
2011
).
10.
F.
Urbain
,
K.
Wilken
,
V.
Smirnov
,
O.
Astakhov
,
A.
Lambertz
,
J.-P.
Becker
,
U.
Rau
,
J.
Ziegler
,
B.
Kaiser
,
W.
Jaegermann
, and
F.
Finger
, “
Development of thin film amorphous silicon tandem junction based photocathodes providing high open-circuit voltages for hydrogen production
,”
Int. J. Photoenergy
2014
,
249317
.
11.
D.
Esposito
,
I.
Levin
,
T.
Moffat
, and
A.
Talin
, “
H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover
,”
Nat. Mater.
12
,
562
568
(
2013
).
12.
Y.
Chen
,
K.
Sun
,
H.
Audesirk
,
C.
Xiang
, and
N.
Lewis
, “
A quantitative analysis of the efficiency of solardriven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts
,”
Energy Environ. Sci.
8
,
1736
1747
(
2015
).
13.
T.
Reier
,
H.
Nong
,
D.
Teschner
,
R.
Schlögl
, and
P.
Strasser
, “
Electrocatalytic oxygen evolution reaction in acidic environments—Reaction mechanisms and catalysts
,”
Adv. Energy Mater.
7
,
1601275
(
2017
).
14.
C.
McCrory
,
S.
Jung
,
I.
Ferrer
,
S.
Chatman
,
J.
Peters
, and
T.
Jaramillo
, “
Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
,”
J. Am. Chem. Soc.
137
,
4347
4357
(
2015
).
15.
T.
Schmidt
,
P.
Ross
, and
N.
Markovic
, “
Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes. Part 2. The hydrogen evolution/oxidation reaction
,”
J. Electroanal. Chem.
524-525
,
252
260
(
2002
).
16.
B.
Hayden
, “
Particle size and support effects in electrocatalysis
,”
Acc. Chem. Res.
46
,
1858
1866
(
2013
).
17.
N.
Danilovic
,
R.
Subbaraman
,
D.
Strmcnik
,
K.-C.
Chang
,
A.
Paulikas
,
V.
Stamenkovic
, and
N.
Markovic
, “
Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts
,”
Angew. Chem.
124
,
12663
12666
(
2012
).
18.
H.
He
,
J.
Chen
,
D.
Zhang
,
F.
Li
,
X.
Chen
,
Y.
Chen
,
L.
Bian
,
Q.
Wang
,
P.
Duan
,
Z.
Wen
, and
X.
Lv
, “
Modulating the electrocatalytic performance of palladium with the electronic metal-support interaction: A case study on oxygen evolution reaction
,”
ACS Catal.
8
,
6617
6626
(
2018
).
19.
F.
Ometto
,
E.
Carbonio
,
É.
Teixeira-Neto
, and
H.
Villullas
, “
Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity
,”
J. Mater. Chem. A
7
,
2075
2086
(
2019
).
20.
L.
Perini
,
C.
Durante
,
M.
Favaro
,
V.
Perazzolo
,
S.
Agnoli
,
O.
Schneider
,
G.
Granozzi
, and
A.
Gennaro
, “
Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction
,”
ACS Appl. Mater. Interfaces
7
,
1170
1179
(
2015
).
21.
J.
Robinson
,
N.
Labrador
,
H.
Chen
,
B.
Sartor
, and
D.
Esposito
, “
Silicon oxide-encapsulated platinum thin films as highly active electrocatalysts for carbon monoxide and methanol oxidation
,”
ACS Catal.
8
,
11423
11434
(
2018
).
22.
S.
Filser
,
T.
Maier
,
R.
Nagel
,
W.
Schindler
,
P.
Lugli
,
M.
Becherer
, and
K.
Krischer
, “
Photoelectrochemical reactivity of well-defined mesoscale gold arrays on SiO2/Si substrates in CO2-saturated aqueous electrolyte
,”
Electrochim. Acta
268
,
546
553
(
2018
).
23.
R.
Nagel
,
S.
Filser
,
T.
Zhang
,
A.
Manzi
,
K.
Schönleber
,
J.
Lindsly
,
J.
Zimmermann
,
T.
Maier
,
G.
Scarpa
,
K.
Krischer
, and
P.
Lugli
, “
Nanoimprint methods for the fabrication of macroscopic plasmonically active metal nanostructures
,”
J. Appl. Phys.
121
,
084305
(
2017
).
24.
A.
Hamelin
, “
Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces
,”
J. Electroanal. Chem.
407
,
1
11
(
1996
).
25.
A.
Bard
and
L.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
Wiley
,
2001
), p.
167
.
26.
S.
Trasatti
and
O.
Petrii
, “
Real surface area measurements in electrochemistry
,”
J. Electroanal. Chem.
327
,
353
376
(
1992
).
27.
T.
Sasaki
and
A.
Matsuda
, “
Mechanism of hydrogen evolution reaction on gold in aqueous sulfuric acid and sodium hydroxide
,”
J. Res. Inst. Catal., Hokkaido Univ.
29
,
113
132
(
1981
); available at http://hdl.handle.net/2115/25119.
28.
R.
Memming
,
Semiconductor Electrochemistry
(
Wiley VCH
,
2000
).
29.
H.
Lee
,
C.
Beriet
,
R.
Ferrigno
, and
H.
Girault
, “
Cyclic voltammetry at a regular microdisc electrode array
,”
J. Electroanal. Chem.
502
,
138
145
(
2001
).
30.
L.
Kibler
, “
Hydrogen electrocatalysis
,”
ChemPhysChem
7
,
985
991
(
2006
).
31.
A.
Kahyarian
,
B.
Brown
, and
S.
Nesic
, “
Mechanisms of the hydrogen evolution reaction in mildly acidic environments on gold
,”
J. Electrochem. Soc.
164
,
H365
H374
(
2017
).
32.
J.
Chun
,
K.
Ra
, and
N.
Kim
, “
Langmuir adsorption isotherms of overpotentially deposited hydrogen at poly-Au and Rh/H2SO4 aqueous electrolyte interfaces—Qualitative analysis using the phase-shift method
,”
J. Electrochem. Soc.
150
,
E207
E217
(
2003
).
33.
T.
Ohmori
and
M.
Enyo
, “
Hydrogen evolution reaction on gold electrode in alkaline solutions
,”
Electrochim. Acta
37
,
2021
2028
(
1992
).
34.
I.
Ledezma-Yanez
,
W.
Wallace
,
P.
Sebastián-Pascual
,
V.
Climent
,
J.
Feliu
, and
M.
Koper
, “
Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
,”
Nat. Energy
2
,
17031
(
2017
).
35.
R.
Subbaraman
,
D.
Tripkovic
,
D.
Strmcnik
,
K.-C.
Chang
,
M.
Uchimura
,
A.
Paulikas
,
V.
Stamenkovic
, and
N.
Markovic
, “
Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces
,”
Science
334
,
1256
1260
(
2011
).
36.
X.
Zhang
,
Electrochemistry of Silicon and Its Oxide
(
Kluwer Academic Publishers
,
2004
), pp.
123
124
.
37.
D.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley-IEEE Press
,
2015
), pp.
319
321
.
38.
K.
Piskorski
and
H.
Przewlocki
, “
The methods to determine flat-band voltage VFB in semiconductor of a MOS structure
,” in
MIPRO
,
2010
.
39.
E.
Nicollian
and
J.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
John Wiley & Sons
,
1982
), pp.
465
467
.
40.
E.
Nicollian
and
J.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
John Wiley & Sons
,
1982
), pp.
81
86
.

Supplementary Material

You do not currently have access to this content.