We present an overview of the variational and diffusion quantum Monte Carlo methods as implemented in the casino program. We particularly focus on developments made in the last decade, describing state-of-the-art quantum Monte Carlo algorithms and software and discussing their strengths and weaknesses. We review a range of recent applications of casino.

1.
P. A. M.
Dirac
and
R. H.
Fowler
, “
Quantum mechanics of many-electron systems
,”
Proc. R. Soc. London, Ser. A
123
,
714
733
(
1929
).
2.
E. A.
Hylleraas
, “
Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium
,”
Z. Phys.
54
,
347
366
(
1929
).
3.
H.
Nakashima
and
H.
Nakatsuji
, “
Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method
,”
J. Chem. Phys.
127
,
224104
(
2007
).
4.
J. C.
Slater
, “
Note on Hartree’s method
,”
Phys. Rev.
35
,
210
211
(
1930
).
5.
V.
Fock
, “
Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems
,”
Z. Phys.
61
,
126
148
(
1930
).
6.
D. R.
Hartree
and
W.
Hartree
, “
Self-consistent field, with exchange, for beryllium
,”
Proc. R. Soc. London, Ser. A
150
,
9
33
(
1935
).
7.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
1989
).
8.
I.
Shavitt
and
R. J.
Bartlett
,
Many-body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
9.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
10.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
11.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
12.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
A823
(
1965
).
13.
W. L.
McMillan
, “
Ground state of liquid He4
,”
Phys. Rev.
138
,
A442
A451
(
1965
).
14.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
15.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
16.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
, “
Continuum variational and diffusion quantum Monte Carlo calculations
,”
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
17.
J. B.
Anderson
, “
Quantum chemistry by random walk. H 2P, H3+D3h1A1, H2Σu+3, H4Σg+1, Be 1S
,”
J. Chem. Phys.
65
,
4121
4127
(
1976
).
18.
T.
Gruber
,
K.
Liao
,
T.
Tsatsoulis
,
F.
Hummel
, and
A.
Grüneis
, “
Applying the coupled-cluster ansatz to solids and surfaces in the thermodynamic limit
,”
Phys. Rev. X
8
,
021043
(
2018
).
19.
T.
Gruber
and
A.
Grüneis
, “
Ab initio calculations of carbon and boron nitride allotropes and their structural phase transitions using periodic coupled cluster theory
,”
Phys. Rev. B
98
,
134108
(
2018
).
20.
T.
Tsatsoulis
,
S.
Sakong
,
A.
Groß
, and
A.
Grüneis
, “
Reaction energetics of hydrogen on Si(100) surface: A periodic many-electron theory study
,”
J. Chem. Phys.
149
,
244105
(
2018
).
21.
K.
Liao
,
X.-Z.
Li
,
A.
Alavi
, and
A.
Grüneis
, “
A comparative study using state-of-the-art electronic structure theories on solid hydrogen phases under high pressures
,”
Npj Comput. Mater.
5
,
110
(
2019
).
22.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
23.
S.
Baroni
and
S.
Moroni
, “
Reptation quantum Monte Carlo: A method for unbiased ground-state averages and imaginary-time correlations
,”
Phys. Rev. Lett.
82
,
4745
4748
(
1999
).
24.
S.
Sorella
,
S.
Baroni
,
R.
Car
, and
M.
Parrinello
, “
A novel technique for the simulation of interacting fermion systems
,”
Europhys. Lett.
8
,
663
668
(
1989
).
25.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
26.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
27.
K.
Ghanem
,
A. Y.
Lozovoi
, and
A.
Alavi
, “
Unbiasing the initiator approximation in full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
151
,
224108
(
2019
).
28.
I.
Sabzevari
and
S.
Sharma
, “
Improved speed and scaling in orbital space variational Monte Carlo
,”
J. Chem. Theory Comput.
14
,
6276
(
2018
).
29.
E.
Neuscamman
, “
Subtractive manufacturing with geminal powers: Making good use of a bad wave function
,”
Mol. Phys.
114
,
577
(
2016
).
30.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Mater
30
,
195901
(
2018
).
31.
L. K.
Wagner
,
M.
Bajdich
, and
L.
Mitas
, “
QWalk: A quantum Monte Carlo program for electronic structure
,”
J. Comput. Phys.
228
,
3390
3404
(
2009
).
32.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
33.
W. K.
Hastings
, “
Monte Carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
34.
B. L.
Hammond
,
J. W. A.
Lester
, and
P. J.
Reynolds
,
Monte Carlo Methods in Ab Initio Quantum Chemistry
(
World Scientific
,
Singapore
,
1994
).
35.
R. M.
Lee
,
G. J.
Conduit
,
N.
Nemec
,
P.
López Ríos
, and
N. D.
Drummond
, “
Strategies for improving the efficiency of quantum Monte Carlo calculations
,”
Phys. Rev. E
83
,
066706
(
2011
).
36.
C. J.
Umrigar
, “
Accelerated Metropolis method,
Phys. Rev. Lett.
71
,
408
411
(
1993
).
37.
H.
Flyvbjerg
and
H. G.
Petersen
, “
Error estimates on averages of correlated data
,”
J. Chem. Phys.
91
,
461
466
(
1989
).
38.
U.
Wolff
, “
Monte Carlo errors with less errors
,”
Comput. Phys. Commun.
156
,
143
153
(
2004
).
39.
M.
Jonsson
, “
Standard error estimation by an automated blocking method
,”
Phys. Rev. E
98
,
043304
(
2018
).
40.
J. R.
Trail
, “
Heavy-tailed random error in quantum Monte Carlo
,”
Phys. Rev. E
77
,
016703
(
2008
).
41.

The use of the terms “static correlation” and “dynamic correlation” in the quantum chemistry literature is less clearcut than suggested by our QMC-focused definition in terms of qualitative and quantitative errors in the nodal surface of the wave function. Nevertheless, the definition we have used captures the idea that static correlations are due to the errors in the Hartree–Fock state, while dynamical correlations are due to the electrons avoiding each other.

42.
S. F.
Boys
,
N. C.
Handy
, and
J. W.
Linnett
, “
A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy
,”
Proc. R. Soc. London A
310
,
63
78
(
1969
).
43.
T.
Kato
, “
On the eigenfunctions of many-particle systems in quantum mechanics
,”
Commun. Pure Appl. Math.
10
,
151
177
(
1957
).
44.
R. T.
Pack
and
W. B.
Brown
, “
Cusp conditions for molecular wavefunctions
,”
J. Chem. Phys.
45
,
556
559
(
1966
).
45.

For a strictly one-dimensional system in which the particles interact via the Coulomb 1/r potential, the wave function must go to zero at all coalescence points in order for the energy expectation value to be well-defined. In practice, the easiest way of achieving this requirement in a study of a one-dimensional electron system is to treat all the electrons as indistinguishable particles.253 Equation (9) continues to be valid for a one-dimensional system, provided the plus sign is selected, irrespective of the spins of the coalescing particles.

46.
A.
Ma
,
M. D.
Towler
,
N. D.
Drummond
, and
R. J.
Needs
, “
Scheme for adding electron-nucleus cusps to Gaussian orbitals
,”
J. Chem. Phys.
122
,
224322
(
2005
).
47.
D.
Bohm
and
D.
Pines
, “
A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas
,”
Phys. Rev.
92
,
609
625
(
1953
).
48.
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Jastrow correlation factor for atoms, molecules, and solids
,”
Phys. Rev. B
70
,
235119
(
2004
).
49.
R. P.
Feynman
and
M.
Cohen
, “
Energy spectrum of the excitations in liquid helium
,”
Phys. Rev.
102
,
1189
1204
(
1956
).
50.
M. A.
Lee
,
K. E.
Schmidt
,
M. H.
Kalos
, and
G. V.
Chester
, “
Green’s function Monte Carlo method for liquid 3He
,”
Phys. Rev. Lett.
46
,
728
731
(
1981
).
51.
Y.
Kwon
,
D. M.
Ceperley
, and
R. M.
Martin
, “
Effects of backflow correlation in the three-dimensional electron gas: Quantum Monte Carlo study
,”
Phys. Rev. B
58
,
6800
6806
(
1998
).
52.
M.
Holzmann
,
D. M.
Ceperley
,
C.
Pierleoni
, and
K.
Esler
, “
Backflow correlations for the electron gas and metallic hydrogen
,”
Phys. Rev. E
68
,
046707
(
2003
).
53.
P.
López Ríos
,
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
Inhomogeneous backflow transformations in quantum Monte Carlo calculations
,”
Phys. Rev. E
74
,
066701
(
2006
).
54.
M.
Taddei
,
M.
Ruggeri
,
S.
Moroni
, and
M.
Holzmann
, “
Iterative backflow renormalization procedure for many-body ground-state wave functions of strongly interacting normal Fermi liquids
,”
Phys. Rev. B
91
,
115106
(
2015
).
55.
M.
Holzmann
and
S.
Moroni
, “
Orbital-dependent backflow wave functions for real-space quantum Monte Carlo
,”
Phys. Rev. B
99
,
085121
(
2019
).
56.
D.
Pfau
,
J. S.
Spencer
,
A. G. de G.
Matthews
, and
W. M. C.
Foulkes
, “
Ab-initio solution of the many-electron Schrödinger equation with deep neural networks
,” arXiv:1909.02487 (
2019
).
57.
C. J.
Umrigar
,
K. G.
Wilson
, and
J. W.
Wilkins
, “
Optimized trial wave functions for quantum Monte Carlo calculations
,”
Phys. Rev. Lett.
60
,
1719
1722
(
1988
).
58.
P. R. C.
Kent
,
R. J.
Needs
, and
G.
Rajagopal
, “
Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions
,”
Phys. Rev. B
59
,
12344
12351
(
1999
).
59.
N. D.
Drummond
and
R. J.
Needs
, “
Variance-minimization scheme for optimizing Jastrow factors
,”
Phys. Rev. B
72
,
085124
(
2005
).
60.
D.
Bressanini
,
G.
Morosi
, and
M.
Mella
, “
Robust wave function optimization procedures in quantum Monte Carlo methods
,”
J. Chem. Phys.
116
,
5345
5350
(
2002
).
61.
D. M.
Ceperley
, “
The statistical error of Green’s function Monte Carlo
,”
J. Stat. Phys.
43
,
815
826
(
1986
).
62.
M. P.
Nightingale
and
V.
Melik-Alaverdian
, “
Optimization of ground- and excited-state wave functions and van der Waals clusters
,”
Phys. Rev. Lett.
87
,
043401
(
2001
).
63.
J.
Toulouse
and
C. J.
Umrigar
, “
Optimization of quantum Monte Carlo wave functions by energy minimization
,”
J. Chem. Phys.
126
,
084102
(
2007
).
64.
C. J.
Umrigar
,
J.
Toulouse
,
C.
Filippi
,
S.
Sorella
, and
R. G.
Hennig
, “
Alleviation of the fermion-sign problem by optimization of many-body wave functions
,”
Phys. Rev. Lett.
98
,
110201
(
2007
).
65.
G.
Ortiz
,
D. M.
Ceperley
, and
R. M.
Martin
, “
New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field
,”
Phys. Rev. Lett.
71
,
2777
2780
(
1993
).
66.
W. M. C.
Foulkes
,
R. Q.
Hood
, and
R. J.
Needs
, “
Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations of excited-state energies
,”
Phys. Rev. B
60
,
4558
(
1999
).
67.

The approximation fαwαδ(RRα) only makes sense under an integral sign. At any instant, the error in this approximation is proportional to 1/W, where W is the number of walkers. The error term is, by construction, zero on average.

68.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
, “
A diffusion Monte Carlo algorithm with very small time-step errors
,”
J. Chem. Phys.
99
,
2865
2890
(
1993
).
69.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
, “
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
,”
Phys. Rev. B
93
,
241118
(
2016
).
70.
N.
Nemec
, “
Diffusion Monte Carlo: Exponential scaling of computational cost for large systems
,”
Phys. Rev. B
81
,
035119
(
2010
).
71.
M.
Boninsegni
and
S.
Moroni
, “
Population size bias in diffusion Monte Carlo
,”
Phys. Rev. E
86
,
056712
(
2012
).
72.
D. M.
Ceperley
and
M. H.
Kalos
, in
Monte Carlo Methods in Statistical Physics
, 2nd ed., edited by
K.
Binder
(
Springer-Verlag, Heidelberg
,
1979
), p.
145
.
73.
R. J.
Hunt
,
M.
Szyniszewski
,
G. I.
Prayogo
,
R.
Maezono
, and
N. D.
Drummond
, “
Quantum Monte Carlo calculations of energy gaps from first principles
,”
Phys. Rev. B
98
,
075122
(
2018
).
74.

If the trial wave function does not describe the lowest-energy state that transforms as a 1D irreducible representation of the symmetry group (e.g., if one were trying to calculate the energy of the 2s state of a hydrogen atom with an approximate trial wave function whose nodal surface is at the wrong radius), then the required equilibration imaginary-time period can be much larger than the subsequent decorrelation period in the statistics-accumulation phase. In this case, the equilibration imaginary-time scale is the time taken for the walker populations in high-energy nodal pockets to die out, which is given by the reciprocal of the difference of the pocket ground-state energy eigenvalues.

75.

For a narrow-gap semiconductor, on the other hand, the sharpest features in E deviate from free-electron behavior is ΔE/(E/k)BZ edge2πaΔE, where a is the lattice constant of the primitive cell. Hence, the longest length scale for narrow-gap semiconductors is L1/(aΔE).

76.
J.
Vrbik
and
S. M.
Rothstein
, “
Optimal spacing and weights in diffusion Monte Carlo
,”
Int. J. Quantum Chem.
29
,
461
468
(
1986
).
77.
See https://vallico.net/casinoqmc/ for quantum Monte Carlo and the CASINO program.
78.
P.
López Ríos
,
P.
Seth
,
N. D.
Drummond
, and
R. J.
Needs
, “
Framework for constructing generic Jastrow correlation factors
,”
Phys. Rev. E
86
,
036703
(
2012
).
79.
T. M.
Whitehead
,
M. H.
Michael
, and
G. J.
Conduit
, “
Jastrow correlation factor for periodic systems
,”
Phys. Rev. B
94
,
035157
(
2016
).
80.
E. A.
Hylleraas
and
A.
Ore
, “
Binding energy of the positronium molecule
,”
Phys. Rev.
71
,
493
496
(
1947
).
81.
K.
Varga
,
J.
Usukura
, and
Y.
Suzuki
, “
Second bound state of the positronium molecule and biexcitons
,”
Phys. Rev. Lett.
80
,
1876
1879
(
1998
).
82.
M.
Puchalski
and
A.
Czarnecki
, “
Dipole excitation of the positronium molecule Ps2
,”
Phys. Rev. Lett.
101
,
183001
(
2008
).
83.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
84.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
 III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, MOLPRO, version 2019.2, a package of ab initio programs,
2019
, see https://www.molpro.net.
85.
C.
Filippi
and
C. J.
Umrigar
, “
Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules
,”
J. Chem. Phys.
105
,
213
226
(
1996
).
86.
E.
Giner
,
R.
Assaraf
, and
J.
Toulouse
, “
Quantum Monte Carlo with reoptimised perturbatively selected configuration-interaction wave functions
,”
Mol. Phys.
114
,
910
920
(
2016
).
87.
M. C.
Per
and
D. M.
Cleland
, “
Energy-based truncation of multi-determinant wavefunctions in quantum Monte Carlo,
J. Chem. Phys.
146
,
164101
(
2017
).
88.
A.
Scemama
,
A.
Benali
,
D.
Jacquemin
,
M.
Caffarel
, and
P.-F.
Loos
, “
Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes
,”
J. Chem. Phys.
149
,
034108
(
2018
).
89.
M.
Dash
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Perturbatively selected configuration-interaction wave functions for efficient geometry optimization in quantum Monte Carlo
,”
J. Chem. Theory Comput.
14
,
4176
(
2018
).
90.
P. K. V. V.
Nukala
and
P. R. C.
Kent
, “
A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations
,”
J. Chem. Phys.
130
,
204105
(
2009
).
91.
B. K.
Clark
,
M. A.
Morales
,
J.
McMinis
,
J.
Kim
, and
G. E.
Scuseria
, “
Computing the energy of a water molecule using multideterminants: A simple, efficient algorithm
,”
J. Chem. Phys.
135
,
244105
(
2011
).
92.
C.
Filippi
,
R.
Assaraf
, and
S.
Moroni
, “
Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo
,”
J. Chem. Phys.
144
,
194105
(
2016
).
93.
A.
Scemama
,
T.
Applencourt
,
E.
Giner
, and
M.
Caffarel
, “
Quantum Monte Carlo with very large multideterminant wavefunctions
,”
J. Comput. Chem.
37
,
1866
1875
(
2016
).
94.
R.
Assaraf
,
S.
Moroni
, and
C.
Filippi
, “
Optimizing the energy with quantum Monte Carlo: A lower numerical scaling for Jastrow-Slater expansions
,”
J. Chem. Theory Comput.
13
,
5273
(
2017
).
95.
G. L.
Weerasinghe
,
P.
López Ríos
, and
R. J.
Needs
, “
Compression algorithm for multideterminant wave functions
,”
Phys. Rev. E
89
,
023304
(
2014
).
96.
W.
Dobrautz
,
S. D.
Smart
, and
A.
Alavi
, “
Efficient formulation of full configuration interaction quantum Monte Carlo in a spin eigenbasis via the graphical unitary group approach
,”
J. Chem. Phys.
151
,
094104
(
2019
).
97.
A. C.
Hurley
,
J. E.
Lennard-Jones
, and
J. A.
Pople
, “
The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules
,”
Proc. R. Soc. London Ser. A
220
,
446
455
(
1953
).
98.
K.-i.
Nakamura
, “
Two-body correlation of interacting fermions
,”
Prog. Theor. Phys.
21
,
713
726
(
1959
).
99.
A. J.
Coleman
, “
Structure of fermion density matrices
,”
Rev. Mod. Phys.
35
,
668
686
(
1963
).
100.
M.
Bajdich
,
L.
Mitas
,
L. K.
Wagner
, and
K. E.
Schmidt
, “
Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods
,”
Phys. Rev. B
77
,
115112
(
2008
).
101.
M.
Casula
and
S.
Sorella
, “
Geminal wave functions with Jastrow correlation: A first application to atoms
,”
J. Chem. Phys.
119
,
6500
6511
(
2003
).
102.
M.
Casula
,
S.
Yunoki
,
C.
Attaccalite
, and
S.
Sorella
, “
Resonating valence bond wave function: From lattice models to realistic systems
,”
Comput. Phys. Commun.
169
,
386
393
(
2005
).
103.
V. A.
Rassolov
, “
A geminal model chemistry
,”
J. Chem. Phys.
117
,
5978
5987
(
2002
).
104.
P. O.
Bugnion
, “
Few-body insights into many-body physics
,” Ph.D. thesis,
University of Cambridge
,
Cambridge
,
2014
.
105.
J. J.
Shepherd
,
G.
Booth
,
A.
Grüneis
, and
A.
Alavi
, “
Full configuration interaction perspective on the homogeneous electron gas
,”
Phys. Rev. B
85
,
081103
(
2012
).
106.
R.
Maezono
,
P.
López Ríos
,
T.
Ogawa
, and
R. J.
Needs
, “
Excitons and biexcitons in symmetric electron-hole bilayers
,”
Phys. Rev. Lett.
110
,
216407
(
2013
).
107.
P.
López Ríos
, “
Backflow and pairing wave function for quantum Monte Carlo methods
,” Ph.D. thesis,
University of Cambridge
,
Cambridge
,
2006
.
108.
P.
López Ríos
,
A.
Perali
,
R. J.
Needs
, and
D.
Neilson
, “
Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers
,”
Phys. Rev. Lett.
120
,
177701
(
2018
).
109.
G. G.
Spink
,
P.
López Ríos
,
N. D.
Drummond
, and
R. J.
Needs
, “
Trion formation in a two-dimensional hole-doped electron gas
,”
Phys. Rev. B
94
,
041410
(
2016
).
110.
J. H.
Lloyd-Williams
and
B.
Monserrat
, “
Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells
,”
Phys. Rev. B
92
,
184301
(
2015
).
111.
N. D.
Drummond
,
B.
Monserrat
,
J. H.
Lloyd-Williams
,
P.
López Ríos
,
C. J.
Pickard
, and
R. J.
Needs
, “
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
,”
Nat. Commun.
6
,
7794
(
2015
).
112.
J.
Trail
,
B.
Monserrat
,
P.
López Ríos
,
R.
Maezono
, and
R. J.
Needs
, “
Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite TiO2 polymorphs
,”
Phys. Rev. B
95
,
121108
(
2017
).
113.
G.
Rajagopal
,
R. J.
Needs
,
S.
Kenny
,
W. M. C.
Foulkes
, and
A.
James
, “
Quantum Monte Carlo calculations for solids using special k points methods
,”
Phys. Rev. Lett.
73
,
1959
1962
(
1994
).
114.
G.
Rajagopal
,
R. J.
Needs
,
A.
James
,
S. D.
Kenny
, and
W. M. C.
Foulkes
, “
Variational and diffusion quantum Monte Carlo calculations at nonzero wave vectors: Theory and application to diamond-structure germanium
,”
Phys. Rev. B
51
,
10591
10600
(
1995
).
115.
L. D.
Landau
, “
The theory of a Fermi liquid
,”
Sov. Phys. JETP
3
,
920
(
1957
).
116.
L. D.
Landau
, “
Oscillations in a Fermi liquid
,”
Sov. Phys. JETP
5
,
101
(
1957
).
117.
L. D.
Landau
, “
On the theory of the Fermi liquid
,”
Sov. Phys. JETP
8
,
70
(
1959
).
118.
D.
Ceperley
, “
Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions
,”
Phys. Rev. B
18
,
3126
3138
(
1978
).
119.
C.
Lin
,
F. H.
Zong
, and
D. M.
Ceperley
, “
Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms
,”
Phys. Rev. E
64
,
016702
(
2001
).
120.
P. P.
Ewald
, “
Die Berechnung optischer und elektrostatischer Gitterpotentiale
,”
Ann. Phys.
369
,
253
(
1921
).
121.
P.
Gori-Giorgi
and
J. P.
Perdew
, “
Pair distribution function of the spin-polarized electron gas: A first-principles analytic model for all uniform densities
,”
Phys. Rev. B
66
,
165118
(
2002
).
122.
G.
Makov
and
M. C.
Payne
, “
Periodic boundary conditions in ab initio calculations
,”
Phys. Rev. B
51
,
4014
4022
(
1995
).
123.
L. M.
Fraser
,
W. M. C.
Foulkes
,
G.
Rajagopal
,
R. J.
Needs
,
S. D.
Kenny
, and
A. J.
Williamson
, “
Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions
,”
Phys. Rev. B
53
,
1814
1832
(
1996
).
124.
A. J.
Williamson
,
G.
Rajagopal
,
R. J.
Needs
,
L. M.
Fraser
,
W. M. C.
Foulkes
,
Y.
Wang
, and
M.-Y.
Chou
, “
Elimination of Coulomb finite-size effects in quantum many-body simulations
,”
Phys. Rev. B
55
,
R4851
R4854
(
1997
).
125.
P. R. C.
Kent
,
R. Q.
Hood
,
A. J.
Williamson
,
R. J.
Needs
,
W. M. C.
Foulkes
, and
G.
Rajagopal
, “
Finite-size errors in quantum many-body simulations of extended systems
,”
Phys. Rev. B
59
,
1917
1929
(
1999
).
126.
S.
Chiesa
,
D. M.
Ceperley
,
R. M.
Martin
, and
M.
Holzmann
, “
Finite-size error in many-body simulations with long-range interactions
,”
Phys. Rev. Lett.
97
,
076404
(
2006
).
127.
T.
Gaskell
, “
The collective treatment of a Fermi gas: II
,”
Proc. Phys. Soc.
77
,
1182
1192
(
1961
).
128.
N. D.
Drummond
,
R. J.
Needs
,
A.
Sorouri
, and
W. M. C.
Foulkes
, “
Finite-size errors in continuum quantum Monte Carlo calculations
,”
Phys. Rev. B
78
,
125106
(
2008
).
129.
M.
Holzmann
,
R. C.
Clay
,
M. A.
Morales
,
N. M.
Tubman
,
D. M.
Ceperley
, and
C.
Pierleoni
, “
Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids
,”
Phys. Rev. B
94
,
035126
(
2016
).
130.
H.
Kwee
,
S.
Zhang
, and
H.
Krakauer
, “
Finite-size correction in many-body electronic structure calculations
,”
Phys. Rev. Lett.
100
,
126404
(
2008
).
131.
M.
Holzmann
,
B.
Bernu
,
V.
Olevano
,
R. M.
Martin
, and
D. M.
Ceperley
, “
Renormalization factor and effective mass of the two-dimensional electron gas
,”
Phys. Rev. B
79
,
041308
(
2009
).
132.
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
, “
All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe
,”
Phys. Rev. E
71
,
066704
(
2005
).
133.
J. R.
Trail
and
R. J.
Needs
, “
Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg
,”
J. Chem. Phys.
122
,
174109
(
2005
).
134.
J. R.
Trail
and
R. J.
Needs
, “
Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior
,”
J. Chem. Phys.
122
,
014112
(
2005
).
135.
J. R.
Trail
and
R. J.
Needs
, “
Pseudopotentials for correlated electron systems
,”
J. Chem. Phys.
139
,
014101
(
2013
).
136.
J. R.
Trail
and
R. J.
Needs
, “
Correlated electron pseudopotentials for 3d-transition metals
,”
J. Chem. Phys.
142
,
064110
(
2015
).
137.
J. R.
Trail
and
R. J.
Needs
, “
Shape and energy consistent pseudopotentials for correlated electron systems
,”
J. Chem. Phys.
146
,
204107
(
2017
).
138.
See https://pseudopotentiallibrary.org/ for Pseudopotential library.
139.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M.
Chandler Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 3d transition metal series
,”
J. Chem. Phys.
149
,
134108
(
2018
).
140.
E. L.
Shirley
and
R. M.
Martin
, “
Many-body core-valence partitioning
,”
Phys. Rev. B
47
,
15413
15427
(
1993
).
141.
M.
Casula
, “
Beyond the locality approximation in the standard diffusion Monte Carlo method
,”
Phys. Rev. B
74
,
161102
(
2006
).
142.
M.
Casula
,
S.
Moroni
,
S.
Sorella
, and
C.
Filippi
, “
Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited
,”
J. Chem. Phys.
132
,
154113
(
2010
).
143.
N. D.
Drummond
,
J. R.
Trail
, and
R. J.
Needs
, “
Trail-Needs pseudopotentials in quantum Monte Carlo calculations with plane-wave/blip basis sets
,”
Phys. Rev. B
94
,
165170
(
2016
).
144.
A.
Zen
,
J. G.
Brandenburg
,
A.
Michaelides
, and
D.
Alfè
, “
A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias
,”
J. Chem. Phys.
151
,
134105
(
2019
).
145.
N. S.
Rytova
, “
Coulomb interaction of electrons in a thin film
,”
Dokl. Akad. Nauk SSSR
163
,
1118
1120
(
1965
).
146.
L. V.
Keldysh
, “
Coulomb interaction in thin semiconductor and semimetal films
,”
J. Exp. Theor. Phys.
29
,
658
(
1979
).
147.
Y.
Yang
,
V.
Gorelov
,
C.
Pierleoni
,
D. M.
Ceperley
, and
M.
Holzmann
,“
Electronic band gaps from quantum Monte Carlo methods
,”
Phys. Rev. B
101
,
085115
(
2020
).
148.
M. J.
Gillan
,
M. D.
Towler
, and
D.
Alfè
, “
Petascale computing opens new vistas for quantum Monte Carlo
,” Psi-k scientific highlight of the month, available at https://psi-k.net/download/highlights/Highlight_103.pdf.
149.
A. J.
Williamson
,
R. Q.
Hood
, and
J. C.
Grossman
, “
Linear-scaling quantum Monte Carlo calculations
,”
Phys. Rev. Lett.
87
,
246406
(
2001
).
150.
D.
Alfè
and
M. J.
Gillan
, “
Efficient localized basis set for quantum Monte Carlo calculations on condensed matter
,”
Phys. Rev. B
70
,
161101
(
2004
).
151.
D.
Alfè
and
M. J.
Gillan
, “
Linear-scaling quantum Monte Carlo technique with non-orthogonal localized orbitals
,”
J. Phys.: Condens. Mater.
16
,
L305
L311
(
2004
).
152.
D.
Ceperley
,
G. V.
Chester
, and
M. H.
Kalos
, “
Monte Carlo simulation of a many-fermion study
,”
Phys. Rev. B
16
,
3081
3099
(
1977
).
153.

For metals, the longest length scale grows with system size; however, shorter length scales make the largest energy contributions.

154.
E.
Mostaani
,
M.
Szyniszewski
,
C. H.
Price
,
R.
Maezono
,
M.
Danovich
,
R. J.
Hunt
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides
,”
Phys. Rev. B
96
,
075431
(
2017
).
155.
D.
Bressanini
,
M.
Mella
, and
G.
Morosi
, “
Stability of four-body systems in three and two dimensions: A theoretical and quantum Monte Carlo study of biexciton molecules
,”
Phys. Rev. A
57
,
4956
4959
(
1998
).
156.
M. Y. J.
Tan
,
N. D.
Drummond
, and
R. J.
Needs
, “
Exciton and biexciton energies in bilayer systems
,”
Phys. Rev. B
71
,
033303
(
2005
).
157.
R. M.
Lee
,
N. D.
Drummond
, and
R. J.
Needs
, “
Exciton-exciton interaction and biexciton formation in bilayer systems
,”
Phys. Rev. B
79
,
125308
(
2009
).
158.
O.
Witham
,
R. J.
Hunt
, and
N. D.
Drummond
, “
Stability of trions in coupled quantum wells modeled by two-dimensional bilayers
,”
Phys. Rev. B
97
,
075424
(
2018
).
159.
T.
Tsuchiya
and
S. i.
Katayama
, “
A quantum Monte Carlo study on excitonic molecules in type-II superlattices
,”
Phys. B
249-251
,
612
616
(
1998
).
160.
T.
Tsuchiya
, “
Biexcitons and charged excitons in GaAs/AlAs type-II superlattices: A quantum Monte Carlo study
,”
J. Lumin.
87-89
,
509
511
(
2000
).
161.
T.
Tsuchiya
, “
Excitonic complexes in quantum structures: A quantum Monte Carlo study
,”
Phys. Status Solidi
1
,
603
607
(
2004
).
162.
T.
Tsuchiya
and
S. i.
Katayama
, “
A quantum Monte Carlo study on excitonic molecules in quantum wells
,”
Solid State Electron.
42
,
1523
1526
(
1998
).
163.
T.
Tsuchiya
, “
Biexcitons and charged excitons in quantum dots: A quantum Monte Carlo study
,”
Phys. E
7
,
470
474
(
2000
).
164.
D. M.
Thomas
,
R. J.
Hunt
,
N. D.
Drummond
, and
M.
Hayne
, “
Binding energies of excitonic complexes in type-II quantum rings from diffusion quantum Monte Carlo calculations
,”
Phys. Rev. B
99
,
115306
(
2019
).
165.
B.
Ganchev
,
N.
Drummond
,
I.
Aleiner
, and
V.
Fal’ko
, “
Three-particle complexes in two-dimensional semiconductors
,”
Phys. Rev. Lett.
114
,
107401
(
2015
).
166.
M. Z.
Mayers
,
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
, “
Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo
,”
Phys. Rev. B
92
,
161404
(
2015
).
167.
M.
Szyniszewski
,
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations
,”
Phys. Rev. B
95
,
081301
(
2017
).
168.
M.
Barbone
,
A. R. P.
Montblanch
,
D. M.
Kara
,
C.
Palacios-Berraquero
,
A. R.
Cadore
,
D.
De Fazio
,
B.
Pingault
,
E.
Mostaani
,
H.
Li
,
B.
Chen
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Tongay
,
G.
Wang
,
A. C.
Ferrari
, and
M.
Atatüre
, “
Charge-tuneable biexciton complexes in monolayer WSe2
,”
Nat. Commun.
9
,
3721
(
2018
).
169.
M.
Danovich
,
D. A.
Ruiz-Tijerina
,
R. J.
Hunt
,
M.
Szyniszewski
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Localized interlayer complexes in heterobilayer transition metal dichalcogenides
,”
Phys. Rev. B
97
,
195452
(
2018
).
170.
F.
Vialla
,
M.
Danovich
,
D. A.
Ruiz-Tijerina
,
M.
Massicotte
,
P.
Schmidt
,
T.
Taniguchi
,
K.
Watanabe
,
R. J.
Hunt
,
M.
Szyniszewski
,
N. D.
Drummond
,
T. G.
Pedersen
,
V. I.
Fal’ko
, and
F. H. L.
Koppens
, “
Tuning of impurity-bound interlayer complexes in a van der Waals heterobilayer
,”
2D Mater.
6
,
035032
(
2019
).
171.
M.
Ruggeri
,
P.
López Ríos
, and
A.
Alavi
, “
Correlation energies of the high-density spin-polarized electron gas to meV accuracy
,”
Phys. Rev. B
98
,
161105
(
2018
).
172.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
173.
P.
Bhattarai
,
A.
Patra
,
C.
Shahi
, and
J. P.
Perdew
, “
How accurate are the parametrized correlation energies of the uniform electron gas?
,”
Phys. Rev. B
97
,
195128
(
2018
).
174.
S.
De Palo
,
F.
Rapisarda
, and
G.
Senatore
, “
Excitonic condensation in a symmetric electron-hole bilayer
,”
Phys. Rev. Lett.
88
,
206401
(
2002
).
175.
G. W.
Burg
,
N.
Prasad
,
K.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
A. H.
MacDonald
,
L. F.
Register
, and
E.
Tutuc
, “
Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures
,”
Phys. Rev. Lett.
120
,
177702
(
2018
).
176.
A.
Perali
,
F.
Palestini
,
P.
Pieri
,
G. C.
Strinati
,
J. T.
Stewart
,
J. P.
Gaebler
,
T. E.
Drake
, and
D. S.
Jin
, “
Evolution of the normal state of a strongly interacting Fermi gas from a pseudogap phase to a molecular Bose gas
,”
Phys. Rev. Lett.
106
,
060402
(
2011
).
177.
H.
Hosono
and
K.
Kuroki
, “
Iron-based superconductors: Current status of materials and pairing mechanism
,”
Phys. C
514
,
399
422
(
2015
).
178.
V.
Huard
,
R. T.
Cox
,
K.
Saminadayar
,
A.
Arnoult
, and
S.
Tatarenko
, “
Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas
,”
Phys. Rev. Lett.
84
,
187
190
(
2000
).
179.
G.
Yusa
,
H.
Shtrikman
, and
I.
Bar-Joseph
, “
Onset of exciton absorption in modulation-doped GaAs quantum wells
,”
Phys. Rev. B
62
,
15390
15393
(
2000
).
180.
I.
Bar-Joseph
, “
Excitons in two-dimensional electron gas
,”
Chem. Phys.
318
,
99
103
(
2005
).
181.
M.
Yamaguchi
,
S.
Nomura
,
H.
Tamura
, and
T.
Akazaki
, “
Measurement of photoluminescence spectral linewidth of a GaAs quantum well in perpendicular electric fields: Evidence of a crossover from trions to an electron-hole gas
,”
Phys. Rev. B
87
,
081310
(
2013
).
182.
N. D.
Drummond
and
R. J.
Needs
, “
Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid
,”
Phys. Rev. B
79
,
085414
(
2009
).
183.
J. L.
Smith
and
P. J.
Stiles
, “
Electron-electron interactions continuously variable in the range 2.1 > rs > 0.9
,”
Phys. Rev. Lett.
29
,
102
104
(
1972
).
184.
V. M.
Pudalov
,
M. E.
Gershenson
,
H.
Kojima
,
N.
Butch
,
E. M.
Dizhur
,
G.
Brunthaler
,
A.
Prinz
, and
G.
Bauer
, “
Low-density spin susceptibility and effective mass of mobile electrons in Si inversion layers
,”
Phys. Rev. Lett.
88
,
196404
(
2002
).
185.
Y.-W.
Tan
,
J.
Zhu
,
H. L.
Stormer
,
L. N.
Pfeiffer
,
K. W.
Baldwin
, and
K. W.
West
, “
Measurements of the density-dependent many-body electron mass in two dimensional GaAs/AlGaAs heterostructures
,”
Phys. Rev. Lett.
94
,
016405
(
2005
).
186.
M.
Padmanabhan
,
T.
Gokmen
,
N. C.
Bishop
, and
M.
Shayegan
, “
Effective mass suppression in dilute, spin-polarized two-dimensional electron systems
,”
Phys. Rev. Lett.
101
,
026402
(
2008
).
187.
G.
Giuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2005
).
188.
Y.
Kwon
,
D. M.
Ceperley
, and
R. M.
Martin
, “
Quantum Monte Carlo calculation of the Fermi-liquid parameters in the two-dimensional electron gas
,”
Phys. Rev. B
50
,
1684
1694
(
1994
).
189.
Y.
Zhang
and
S.
Das Sarma
, “
Spin polarization dependence of carrier effective mass in semiconductor structures: Spintronic effective mass
,”
Phys. Rev. Lett.
95
,
256603
(
2005
).
190.
N. D.
Drummond
and
R. J.
Needs
, “
Quantum Monte Carlo calculation of the energy band and quasiparticle effective mass of the two-dimensional Fermi fluid
,”
Phys. Rev. B
80
,
245104
(
2009
).
191.
N. D.
Drummond
and
R. J.
Needs
, “
Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas
,”
Phys. Rev. B
87
,
045131
(
2013
).
192.
E.
Boroński
and
R. M.
Nieminen
, “
Electron-positron density-functional theory
,”
Phys. Rev. B
34
,
3820
3831
(
1986
).
193.
M. J.
Puska
and
R. M.
Nieminen
, “
Theory of positrons in solids and on solid surfaces
,”
Rev. Mod. Phys.
66
,
841
897
(
1994
).
194.
R.
Krause-Rehberg
and
H. S.
Leipner
,
Positron Annihilation in Semiconductors
, 1st ed. (
Springer-Verlag
,
Berlin Heidelberg
,
1999
), Vol. 127.
195.
Z.
Major
,
S. B.
Dugdale
,
R. J.
Watts
,
G.
Santi
,
M. A.
Alam
,
S. M.
Hayden
,
J. A.
Duffy
,
J. W.
Taylor
,
T.
Jarlborg
,
E.
Bruno
,
D.
Benea
, and
H.
Ebert
, “
Direct observation of the multisheet Fermi surface in the strongly correlated transition metal compound ZrZn2
,”
Phys. Rev. Lett.
92
,
107003
(
2004
).
196.
N. D.
Drummond
,
P.
López Ríos
,
R. J.
Needs
, and
C. J.
Pickard
, “
Quantum Monte Carlo study of a positron in an electron gas
,”
Phys. Rev. Lett.
107
,
207402
(
2011
).
197.
J.
Arponen
and
E.
Pajanne
, “
Electron liquid in collective description. III. Positron annihilation
,”
Ann. Phys.
121
,
343
389
(
1979
).
198.
J.
Kuriplach
and
B.
Barbiellini
, “
Improved generalized gradient approximation for positron states in solids
,”
Phys. Rev. B
89
,
155111
(
2014
).
199.
J. A.
Weber
,
A.
Bauer
,
P.
Böni
,
H.
Ceeh
,
S. B.
Dugdale
,
D.
Ernsting
,
W.
Kreuzpaintner
,
M.
Leitner
,
C.
Pfleiderer
, and
C.
Hugenschmidt
, “
Spin-resolved Fermi surface of the localized ferromagnetic Heusler compound Cu2MnAl measured with spin-polarized positron annihilation
,”
Phys. Rev. Lett.
115
,
206404
(
2015
).
200.
M.
Szyniszewski
,
E.
Mostaani
,
A.
Knothe
,
A. C.
Ferrari
,
V. I.
Fal’ko
, and
N. D.
Drummond
, “
Lattice reconstruction of graphene supermoiré heterostructures due to van der Waals adhesion to hBN
” (
2020
) (unpublished).
201.
C.-R.
Hsing
,
C.
Cheng
,
J.-P.
Chou
,
C.-M.
Chang
, and
C.-M.
Wei
, “
Van der Waals interaction in a boron nitride bilayer
,”
New J. Phys.
16
,
113015
(
2014
).
202.
L.
Spanu
,
S.
Sorella
, and
G.
Galli
, “
Nature and strength of interlayer binding in graphite
,”
Phys. Rev. Lett.
103
,
196401
(
2009
).
203.
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Quantum Monte Carlo calculation of the binding energy of bilayer graphene
,”
Phys. Rev. Lett.
115
,
115501
(
2015
).
204.
A.
Zen
,
J. G.
Brandenburg
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
, and
A.
Michaelides
, “
Fast and accurate quantum Monte Carlo for molecular crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
1724
1729
(
2018
).
205.
T.
Tsatsoulis
,
F.
Hummel
,
D.
Usvyat
,
M.
Schütz
,
G. H.
Booth
,
S. S.
Binnie
,
M. J.
Gillan
,
D.
Alfè
,
A.
Michaelides
, and
A.
Grüneis
, “
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface
,”
J. Chem. Phys.
146
,
204108
(
2017
).
206.
Y. S.
Al-Hamdani
,
M.
Ma
,
D.
Alfè
,
O. A.
von Lilienfeld
, and
A.
Michaelides
, “
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
,”
J. Chem. Phys.
142
,
181101
(
2015
).
207.
J.
Ma
,
A.
Michaelides
,
D.
Alfè
,
L.
Schimka
,
G.
Kresse
, and
E.
Wang
, “
Adsorption and diffusion of water on graphene from first principles
,”
Phys. Rev. B
84
,
033402
(
2011
).
208.
J.
Chen
,
A.
Zen
,
J. G.
Brandenburg
,
D.
Alfè
, and
A.
Michaelides
, “
Evidence for stable square ice from quantum Monte Carlo
,”
Phys. Rev. B
94
,
220102
(
2016
).
209.
Y.
Akahama
,
Y.
Mizuki
,
S.
Nakano
,
N.
Hirao
, and
Y.
Ohishi
, “
Raman scattering and X-ray diffraction studies on phase III of solid hydrogen
,”
J. Phys.: Conf. Ser.
950
,
042060
(
2017
).
210.
H.
Kawamura
,
Y.
Akahama
,
S.
Umemoto
,
K.
Takemura
,
Y.
Ohishi
, and
O.
Shimomura
, “
X-ray powder diffraction from solid deuterium
,”
J. Phys.: Condens. Mater.
14
,
10407
(
2002
).
211.
A. F.
Goncharov
,
R. J.
Hemley
, and
H.-k.
Mao
, “
Vibron frequencies of solid H2 and D2 to 200 GPa and implications for the P–T phase diagram
,”
J. Chem. Phys.
134
,
174501
(
2011
).
212.
M. I.
Eremets
and
I. A.
Troyan
, “
Conductive dense hydrogen
,”
Nat. Mater.
10
,
927
931
(
2011
).
213.
C. J.
Pickard
and
R. J.
Needs
, “
Structure of phase III of solid hydrogen
,”
Nat. Phys.
3
,
473
(
2007
).
214.
C. J.
Pickard
,
M.
Martinez-Canales
, and
R. J.
Needs
, “
Density functional theory study of phase IV of solid hydrogen
,”
Phys. Rev. B
85
,
214114
(
2012
).
215.
C. J.
Pickard
,
M.
Martinez-Canales
, and
R. J.
Needs
, “
Erratum: Density functional theory study of phase IV of solid hydrogen
,”
Phys. Rev. B
86
,
059902
(
2012
).
216.
C. J.
Pickard
and
R. J.
Needs
, “
Ab initio random structure searching
,”
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
217.
R. J.
Needs
and
C. J.
Pickard
, “
Perspective: Role of structure prediction in materials design
,”
APL Mater.
4
,
053210
(
2016
).
218.
B.
Monserrat
,
R. J.
Needs
,
E.
Gregoryanz
, and
C. J.
Pickard
, “
Hexagonal structure of phase III of solid hydrogen
,”
Phys. Rev. B
94
,
134101
(
2016
).
219.
B.
Monserrat
,
N. D.
Drummond
, and
R. J.
Needs
, “
Anharmonic vibrational properties in periodic systems: Energy, electron-phonon coupling, and stress
,”
Phys. Rev. B
87
,
144302
(
2013
).
220.
P.
Dalladay-Simpson
,
R. T.
Howie
, and
E.
Gregoryanz
, “
Evidence for a new phase of dense hydrogen above 325 gigapascals
,”
Nature
529
,
63
(
2016
).
221.
B.
Monserrat
,
N. D.
Drummond
,
P.
Dalladay-Simpson
,
R. T.
Howie
,
P.
López Ríos
,
E.
Gregoryanz
,
C. J.
Pickard
, and
R. J.
Needs
, “
Structure and metallicity of phase V of hydrogen
,”
Phys. Rev. Lett.
120
,
255701
(
2018
).
222.
S.
Azadi
and
G. J.
Ackland
, “
The role of van der Waals and exchange interactions in high-pressure solid hydrogen
,”
Phys. Chem. Chem. Phys.
19
,
21829
(
2017
).
223.
S.
Azadi
,
W. M. C.
Foulkes
, and
T. D.
Kühne
, “
Quantum Monte Carlo study of high pressure solid molecular hydrogen
,”
New J. Phys.
15
,
113005
(
2013
).
224.
S.
Azadi
,
B.
Monserrat
,
W. M. C.
Foulkes
, and
R. J.
Needs
, “
Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study
,”
Phys. Rev. Lett.
112
,
165501
(
2014
).
225.
S.
Azadi
and
T. D.
Kühne
, “
Unconventional phase III of high pressure solid hydrogen
,”
Phys. Rev. B
100
,
155103
(
2019
).
226.
A. F.
Goncharov
,
J. S.
Tse
,
H.
Wang
,
J.
Yang
,
V. V.
Struzhkin
,
R. T.
Howie
, and
E.
Gregoryanz
, “
Bonding, structures, and band gap closure of hydrogen at high pressure
,”
Phys. Rev. B
87
,
024101
(
2013
).
227.
S.
Azadi
,
N. D.
Drummond
, and
W. M. C.
Foulkes
, “
Nature of the metallization transition in solid hydrogen
,”
Phys. Rev. B
95
,
035142
(
2017
).
228.
M. I.
Eremets
,
A. P.
Drozdov
,
P. P.
Kong
, and
H.
Wang
, “
Semimetallic molecular hydrogen at pressure above 350 GPa
,”
Nat. Phys.
15
,
1246
1249
(
2019
).
229.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
, “
Breaking the carbon dimer: The challenges of multiple bond dissociation with full configuration interaction quantum Monte Carlo methods
,”
J. Chem. Phys.
135
,
084104
(
2011
).
230.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
, “
Taming the first-row diatomics: A full configuration interaction quantum Monte Carlo study
,”
J. Chem. Theory Comput.
8
,
4138
4152
(
2012
).
231.
G.
Li Manni
,
S. D.
Smart
, and
A.
Alavi
, “
Combining the complete active space self-consistent field method and the full configuration interaction quantum Monte Carlo within a super-CI framework, with application to challenging metal-porphyrins
,”
J. Chem. Theory Comput.
12
,
1245
1258
(
2016
).
232.
L.
Veis
,
A.
Antalík
,
Ö.
Legeza
,
A.
Alavi
, and
J.
Pittner
, “
The intricate case of tetramethyleneethane: A full configuration interaction quantum Monte Carlo benchmark and multireference coupled cluster studies
,”
J. Chem. Theory Comput.
14
,
2439
2445
(
2018
).
233.
V. A.
Neufeld
and
A. J. W.
Thom
, “
A study of the dense uniform electron gas with high orders of coupled cluster
,”
J. Chem. Phys.
147
,
194105
(
2017
).
234.
M.
Dash
,
J.
Feldt
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Excited states with selected configuration interaction-quantum Monte Carlo: Chemically accurate excitation energies and geometries
,”
J. Chem. Theory Comput.
15
,
4896
(
2019
).
235.
H.
Luo
and
A.
Alavi
, “
Combining the transcorrelated method with full configuration interaction quantum Monte Carlo: Application to the homogeneous electron gas
,”
J. Chem. Theory Comput.
14
,
1403
(
2018
).
236.
A. J.
Cohen
,
H.
Luo
,
K.
Guther
,
W.
Dobrautz
,
D. P.
Tew
, and
A.
Alavi
, “
Similarity transformation of the electronic Schrödinger equation via Jastrow factorization
,”
J. Chem. Phys.
151
,
061101
(
2019
).
237.
W.
Dobrautz
,
H.
Luo
, and
A.
Alavi
, “
Compact numerical solutions to the two-dimensional repulsive Hubbard model obtained via nonunitary similarity transformations
,”
Phys. Rev. B
99
,
075119
(
2019
).
238.
J. H.
Lloyd-Williams
,
R. J.
Needs
, and
G. J.
Conduit
, “
Pseudopotential for the electron-electron interaction
,”
Phys. Rev. B
92
,
075106
(
2015
).
239.
C. A.
Melton
,
M.
Zhu
,
S.
Guo
,
A.
Ambrosetti
,
F.
Pederiva
, and
L.
Mitas
, “
Spin-orbit interactions in electronic structure quantum Monte Carlo methods
,”
Phys. Rev. A
93
,
042502
(
2016
).
240.
E.
Mostaani
,
B.
Monserrat
,
N. D.
Drummond
, and
C. J.
Lambert
, “
Quasiparticle and excitonic gaps of one-dimensional carbon chains
,”
Phys. Chem. Chem. Phys.
18
,
14810
14821
(
2016
).
241.
Y. Y. F.
Liu
,
B.
Andrews
, and
G. J.
Conduit
, “
Direct evaluation of the force constant matrix in quantum Monte Carlo
,”
J. Chem. Phys.
150
,
034104
(
2019
).
242.
A.
Badinski
,
P. D.
Haynes
,
J. R.
Trail
, and
R. J.
Needs
, “
Methods for calculating forces within quantum Monte Carlo simulations
,”
J. Phys.: Condens. Matt.
22
,
074202
(
2010
).
243.
A. N.
Badinski
,
Forces in Quantum Monte Carlo
, Ph.D. thesis,
University of Cambridge
,
Cambridge
,
2008
.
244.
R.
Assaraf
and
M.
Caffarel
, “
Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces
,”
J. Chem. Phys.
119
,
10536
10552
(
2003
).
245.
A.
Badinski
,
J. R.
Trail
, and
R. J.
Needs
, “
Energy derivatives in quantum Monte Carlo involving the zero-variance property
,”
J. Chem. Phys.
129
,
224101
(
2008
).
246.
A.
Badinski
and
R. J.
Needs
, “
Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials
,”
Phys. Rev. E
76
,
036707
(
2007
).
247.
A.
Badinski
and
R. J.
Needs
, “
Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials
,”
Phys. Rev. B
78
,
035134
(
2008
).
248.
S.
Chiesa
,
D. M.
Ceperley
, and
S.
Zhang
, “
Accurate, efficient, and simple forces computed with quantum Monte Carlo methods
,”
Phys. Rev. Lett.
94
,
036404
(
2005
).
249.
C.
Attaccalite
and
S.
Sorella
, “
Stable liquid hydrogen at high pressure by a novel ab initio molecular-dynamics calculation
,”
Phys. Rev. Lett.
100
,
114501
(
2008
).
250.
P.
López Ríos
and
G. J.
Conduit
, “
Tail-regression estimator for heavy-tailed distributions of known tail indices and its application to continuum quantum Monte Carlo data
,”
Phys. Rev. E
99
,
063312
(
2019
).
251.
B.
Efron
and
R.
Tibshirani
, “
Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy
,”
Stat. Sci.
1
,
54
(
1986
).
252.
See for the raw data used in the figures and tables in this paper.
253.
R. M.
Lee
and
N. D.
Drummond
, “
Ground-state properties of the one-dimensional electron liquid
,”
Phys. Rev. B
83
,
245114
(
2011
).
You do not currently have access to this content.