Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper, we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way toward exascale computing.

1.
S.
Baroni
,
P.
Giannozzi
, and
A.
Testa
, “
Green’s function approach to linear response in solids
,”
Phys. Rev. Lett.
58
,
1861
1864
(
1987
).
2.
P.
Giannozzi
,
S.
de Gironcoli
,
P.
Pavone
, and
S.
Baroni
, “
Ab initio calculation of phonon dispersions in semiconductors
,”
Phys. Rev. B
43
,
7231
(
1991
).
3.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
, “
Phonons and related crystal properties from density-functional perturbation theory
,”
Rev. Mod. Phys.
73
,
515
562
(
2001
).
4.
X.
Gonze
, “
Adiabatic density-functional perturbation theory
,”
Phys. Rev. A
52
,
1096
1114
(
1995
).
5.
X.
Gonze
, “
Erratum: Adiabatic density-functional perturbation theory
,”
Phys. Rev. A
54
,
4591
(
1996
).
6.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
(
22
),
2471
2474
(
1985
).
7.

At the time, PWscf had already been released under the GPL.

8.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
S.
Alexander
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
(
39
),
395502
(
2009
).
9.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M.
Buongiorno Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A.
Dal Corso
,
S.
de Gironcoli
,
P.
Delugas
,
A. R.
DiStasio
, Jr.
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-K.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
10.
I.
Timrov
,
N.
Marzari
, and
M.
Cococcioni
, “
Hubbard parameters from density-functional perturbation theory
,”
Phys. Rev. B
98
,
085127
(
2018
).
11.
V.
Kapil
,
M.
Rossi
,
O.
Marsalek
,
R.
Petraglia
,
Y.
Litman
,
T.
Spura
,
B.
Cheng
,
A.
Cuzzocrea
,
R. H.
Meißner
,
D. M.
Wilkins
,
B. A.
Helfrecht
,
P.
Juda
,
S. P.
Bienvenue
,
W.
Fang
,
J.
Kessler
,
I.
Poltavsky
,
S.
Vandenbrande
,
J.
Wieme
,
C.
Corminboeuf
,
T. D.
Kühne
,
D. E.
Manolopoulos
,
T. E.
Markland
,
J. O.
Richardson
,
A.
Tkatchenko
,
G. A.
Tribello
,
V.
Van Speybroeck
, and
M.
Ceriotti
, “
i-PI 2.0: A universal force engine for advanced molecular simulations
,”
Comput. Phys. Commun.
236
,
214
223
(
2019
).
12.
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).
13.
A.
Genova
,
D.
Ceresoli
,
A.
Krishtal
,
O.
Andreussi
,
A. R.
DiStasio
, Jr.
, and
M.
Pavanello
, “
eQE: An open-source density functional embedding theory code for the condensed phase
,”
Int. J. Quantum Chem.
117
(
16
),
e25401
(
2017
).
14.
J.
Kim
,
A. D.
Baczewski
,
T. D.
Beaudet
,
A.
Benali
,
M. C.
Bennett
,
M. A.
Berrill
,
N. S.
Blunt
,
E. J. L.
Borda
,
M.
Casula
,
D. M.
Ceperley
,
S.
Chiesa
,
B. K.
Clark
,
R. C.
Clay
,
K. T.
Delaney
,
M.
Dewing
,
K. P.
Esler
,
H.
Hao
,
O.
Heinonen
,
P. R. C.
Kent
,
J. T.
Krogel
,
I.
Kylänpää
,
Y. W.
Li
,
M. G.
Lopez
,
Y.
Luo
,
F. D.
Malone
,
R. M.
Martin
,
A.
Mathuriya
,
J.
McMinis
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
W. D.
Parker
,
S. D.
Pineda Flores
,
N. A.
Romero
,
B. M.
Rubenstein
,
J. A. R.
Shea
,
H.
Shin
,
L.
Shulenburger
,
A. F.
Tillack
,
J. P.
Townsend
,
N. M.
Tubman
,
B.
Van Der Goetz
,
J. E.
Vincent
,
D. C.
Yang
,
Y.
Yang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids
,”
J. Phys.: Condens. Matter
30
(
19
),
195901
(
2018
).
15.
D.
Sangalli
,
A.
Ferretti
,
H.
Miranda
,
C.
Attaccalite
,
I.
Marri
,
E.
Cannuccia
,
P.
Melo
,
M.
Marsili
,
F.
Paleari
,
A.
Marrazzo
,
G.
Prandini
,
P.
Bonfà
,
M. O.
Atambo
,
F.
Affinito
,
M.
Palummo
,
A.
Molina-Sánchez
,
C.
Hogan
,
M.
Grüning
,
D.
Varsano
, and
A.
Marini
, “
Many-body perturbation theory calculations using the yambo code
,”
J. Phys.: Condens. Matter
31
(
32
),
325902
(
2019
).
16.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
(
6
),
1269
1289
(
2012
).
17.
M.
Govoni
and
G.
Galli
, “
Large scale GW calculations
,”
J. Chem. Theory Comput.
11
,
2680
2696
(
2015
).
18.
M.
Schlipf
,
H.
Lambert
,
N.
Zibouche
, and
F.
Giustino
, “
SternheimerGW: A program for calculating GW quasiparticle band structures and spectral functions without unoccupied states
,”
Comput. Phys. Commun.
247
,
106856
(
2020
).
19.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
(
16
),
165902
(
2020
).
20.
S.
Poncé
,
E. R.
Margine
,
C.
Verdi
, and
F.
Giustino
, “
EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized wannier functions
,”
Comput. Phys. Commun.
209
,
116
133
(
2016
).
21.
A.
Otero-de-la-Roza
,
E. R.
Johnson
, and
V.
Luaña
, “
Critic2: A program for real-space analysis of quantum chemical interactions in solids
,”
Comput. Phys. Commun.
185
(
3
),
1007
1018
(
2014
).
22.
A.
Ferretti
,
A.
Calzolari
,
B.
Bonferroni
, and
R. D.
Felice
, “
Maximally-localized Wannier functions from PAW or ultrasoft pseudopotentials
,”
J. Phys.: Condens. Matter
19
,
036215
(
2007
).
23.
L.
Calderín
,
V. V.
Karasiev
, and
S. B.
Trickey
, “
Kubo–Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets
,”
Comput. Phys. Commun.
221
,
118
142
(
2017
).
24.
See https://www.top500.org/project/ for Top500 supercomputers, 2019.
25.
M.
Feldman
, New GPU-Accelerated supercomputers change the balance of power on the TOP500, June 2018. https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500.
26.
MaX: Materials at the eXascale. An EU Centre of Excellence for Supercomputing Applications. https://www.max-centre.eu.
27.
H.
Carter Edwards
,
C. R.
Trott
, and
D.
Sunderland
, “
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
,”
J. Parallel Distrib. Comput.
74
(
12
),
3202
3216
(
2014
);
S.
Krishnamoorthy
,
J.
Ramanujam
, and
P.
Sadayappan
, “
Introduction to the JPDC special issue on domain-specific languages and high-level frameworks for high-performance computing
,”
J. Parallel Distrib. Comput.
74
,
3175
(
2014
).
28.
E.
Zenker
,
B.
Worpitz
,
R.
Widera
,
A.
Huebl
,
G.
Juckeland
,
A.
Knüpfer
,
W. E.
Nagel
, and
M.
Bussmann
,
Alpaka—An Abstraction Library for Parallel Kernel Acceleration
(
IEEE Computer Society
,
2016
).
29.
A.
Matthes
,
R.
Widera
,
E.
Zenker
,
B.
Worpitz
,
A.
Huebl
, and
M.
Bussmann
, “
Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library
,” in
High Performance Computing
(
Springer
,
2017
).
30.
R.
Hornung
,
H.
Jones
,
J.
Keasler
,
R.
Neely
,
O.
Pearce
,
S.
Hammond
,
C.
Trott
,
P.
Lin
,
C.
Vaughan
,
J.
Cook
,
R.
Hoekstra
,
B.
Bergen
,
J.
Payne
, and
G.
Womeldorff
, ASC tri-lab co-design level 2 milestone report 2015, Report No. LLNL-TR-677453, September 23, 2015.
31.
See https://esl.cecam.org for ESL—the electronic structure library.
32.
See https://gitlab.e-cam2020.eu/esl/ESLW_Drivers for electronic structure library coding workshop: Drivers. Trieste; 10–21 July 2017.
33.
S.
de Gironcoli
, “
Lattice dynamics of metals from density-functional perturbation theory
,”
Phys. Rev. B
51
,
6773(R)
(
1995
).
34.
A.
Dal Corso
,
A.
Pasquarello
, and
A.
Baldereschi
, “
Density-functional perturbation theory for lattice dynamics with ultrasoft pseudopotentials
,”
Phys. Rev. B
56
,
R11369(R)
(
1997
).
35.
A.
Dal Corso
and
S.
de Gironcoli
, “
Ab initio phonon dispersions of Fe and Ni
,”
Phys. Rev. B
62
,
273
(
2000
).
36.
A.
Dal Corso
, “
Density-functional perturbation theory with ultrasoft pseudopotentials
,”
Phys. Rev. B
64
,
235118
(
2001
).
37.
A.
Dal Corso
, “
Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: Application to fcc-Pt and fcc-Au
,”
Phys. Rev. B
76
,
054308
(
2007
).
38.
A.
Dal Corso
, “
Density functional perturbation theory within the projector augmented wave method
,”
Phys. Rev. B
81
,
075123
(
2010
).
39.
A.
Floris
,
S.
de Gironcoli
,
E. K. U.
Gross
, and
M.
Cococcioni
, “
Vibrational properties of MnO and NiO from DFT + U-based density functional perturbation theory
,”
Phys. Rev. B
84
,
161102(R)
(
2011
).
40.
R.
Sabatini
,
E.
Küçükbenli
,
C. H.
Pham
, and
S.
de Gironcoli
, “
Phonons in nonlocal van der Waals density functional theory
,”
Phys. Rev. B
93
,
235120
(
2016
).
41.
T.
Sohier
,
M.
Calandra
, and
F.
Mauri
, “
Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene
,”
Phys. Rev. B
96
,
075448
(
2017
).
42.
A.
Urru
and
A.
Dal Corso
, “
Density functional perturbation theory for lattice dynamics with fully relativistic ultrasoft pseudopotentials: The magnetic case
,”
Phys. Rev. B
100
,
045115
(
2019
).
43.
A.
Floris
,
I.
Timrov
,
B.
Himmetoglu
,
N.
Marzari
,
S.
de Gironcoli
, and
M.
Cococcioni
, “
Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials
,”
Phys. Rev. B
101
,
064305
(
2020
).
44.
S.
Baroni
and
R.
Gebauer
, “
The Liouville-Lanczos approach to time-dependent density-functional (perturbation) theory
,” in
Fundamentals of Time-dependent Density Functional Theory, Lecture Notes in Physics
, edited by
M. A. L.
Marques
,
N. T.
Maitra
,
F. M. S.
Nogueira
,
E. K. U.
Gross
, and
A.
Rubio
(
Springer-Verlag, Berlin, Heidelberg
,
2012
), Vol. 837, Chap. 19, pp.
375
390
.
45.
B.
Walker
,
A. M.
Saitta
,
R.
Gebauer
, and
S.
Baroni
, “
Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy
,”
Phys. Rev. Lett.
96
(
11
),
113001
(
2006
).
46.
D.
Rocca
,
R.
Gebauer
,
Y.
Saad
, and
S.
Baroni
, “
Turbo charging time-dependent density-functional theory with Lanczos chains
,”
J. Chem. Phys.
128
(
15
),
154105
(
2008
).
47.
O. B.
Malcioğlu
,
R.
Gebauer
,
D.
Rocca
, and
S.
Baroni
, “
turboTDDFT—A code for the simulation of molecular spectra using the Liouville–Lanczos approach to time-dependent density-functional perturbation theory
,”
Comput. Phys. Commun.
182
(
8
),
1744
1754
(
2011
).
48.
X.
Ge
,
S. J.
Binnie
,
D.
Rocca
,
R.
Gebauer
, and
S.
Baroni
, “
turboTDDFT 2.0 — Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory
,”
Comput. Phys. Commun.
185
,
2080
2089
(
2014
).
49.
I.
Timrov
,
O.
Andreussi
,
A.
Biancardi
,
N.
Marzari
, and
S.
Baroni
, “
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
,”
J. Chem. Phys.
142
,
034111
(
2015
).
50.
I.
Timrov
,
N.
Vast
,
R.
Gebauer
, and
S.
Baroni
, “
Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory
,”
Phys. Rev. B
88
(
6
),
064301
(
2013
);
I.
Timrov
,
N.
Vast
,
R.
Gebauer
, and
S.
Baroni
,
Phys. Rev. B
91
,
139901(E)
(
2015
).
51.
I.
Timrov
,
N.
Vast
,
R.
Gebauer
, and
S.
Baroni
, “
turboEELS–A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville–Lanczos approach to time-dependent density-functional perturbation theory
,”
Comput. Phys. Commun.
196
,
460
469
(
2015
).
52.
O.
Motornyi
,
N.
Vast
,
I.
Timrov
,
O.
Baseggio
,
S.
Baroni
, and
A.
Dal Corso
, “
Electron energy loss spectroscopy of bulk gold with ultrasoft pseudopotentials and the Liouville–Lanczos method
,”
Phys. Rev. B
(unpublished) (
2020
).
53.
T.
Gorni
,
I.
Timrov
, and
S.
Baroni
, “
Spin dynamics from time-dependent density functional perturbation theory
,”
Eur. Phys. J. B
91
(
10
),
249
(
2018
).
54.
See https://www.w3.org/standards/xml/schema for XML schema definition (XSD).
55.
See https://pypi.org/project/xmlschema/ for the xmlschema package.
56.
See https://gitlab.com/QEF/xmltool for the xmltool package.
57.
See https://pypi.org/project/qeschema/ for the qeschema package.
58.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
59.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
60.
A.
Kokalj
, “
XCrySDen—A new program for displaying crystalline structures and electron densities
,”
J. Mol. Graphics Model.
17
(
3
),
176
179
(
1999
).
61.
See https://github.com/QEF/postqe for the postQE package.
62.
F.
Spiga
and
I.
Girotto
, “
phiGEMM: A CPU-GPU library for porting Quantum ESPRESSO on Hybrid systems
,” in
Proceedings of the 2012 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(
IEEE
,
2012
).
63.
F.
Spiga
, QE-GPU: GPU-Accelerated Quantum ESPRESSO, 2012–2017.
64.
I.
Girotto
,
N.
Varini
,
F.
Spiga
,
C.
Cavazzoni
,
D.
Ceresoli
,
L.
Martin-Samos
, and
T.
Gorni
, Enabling of Quantum ESPRESSO to petascale scientific challenges. PRACE, 2012.
65.
J.
Romero
,
E.
Phillips
,
G.
Ruetsch
,
M.
Fatica
,
F.
Spiga
, and
P.
Giannozzi
, “
A performance study of Quantum ESPRESSO’s PWscf code on multi-core and GPU systems
,” in
International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(
Springer
,
2018
), pp.
67
87
.
66.
M.
Fatica
,
J.
Romero
,
E.
Phillips
, and
F.
Spiga
(
2017
). “
GPU-accelerated Quantum ESPRESSO
,” Zenodo. .
67.

Optionally, cuRAND can also be used for the generation of random wavefunctions.

68.
C.
Cavazzoni
,
F.
Affinito
,
U.
Alekseeva
,
C.
Cardoso
,
A.
Degomme
,
P.
Delugas
,
A.
Ferretti
,
A.
Garcia
,
L.
Genovese
,
P.
Giannozzi
,
A.
Kozhevnikov
,
I.
Marri
,
S.
Mohr
, and
D.
Wortmann
, First report on code profiling and bottleneck identification, structured plan of forward activities. Deliverable D4.2 of the H2020 CoE MAX. EC Grant Agreement No: 824143, CINECA, Bologna, Italy (2019). max-centre.eu/project-repository.
69.
D.
Wortmann
,
U.
Alekseeva
,
S.
Baroni
,
A.
Degomme
,
P.
Delugas
,
S.
de Gironcoli
,
A.
Ferretti
,
A.
Garcia
,
L.
Genovese
,
P.
Giannozzi
,
A.
Kozhevnikov
, and
I.
Marri
, First release of MaX software: report on the performance portability. Deliverable D2.1 of the H2020 CoE MAX. EC Grant Agreement No: 824143, Jülich, Germany (2019). max-centre.eu/project-repository.
70.
See https://www.materialscloud.org/work/tools/qeinputgenerator for Quantum ESPRESSO input generator and structure visualizer.
71.
G.
Prandini
,
A.
Marrazzo
,
I. E.
Castelli
,
N.
Mounet
, and
N.
Marzari
, “
Precision and efficiency in solid-state pseudopotential calculations
,”
npj Comput. Mater.
4
(
1
),
72
(
2018
).
72.
A.
Willand
,
Y. O.
Kvashnin
,
L.
Genovese
,
Á.
Vázquez-Mayagoitia
,
A. K.
Deb
,
A.
Sadeghi
,
T.
Deutsch
, and
S.
Goedecker
, “
Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations
,”
J. Chem. Phys.
138
(
10
),
104109
(
2013
).
73.
M.
Schlipf
and
F.
Gygi
, “
Optimization algorithm for the generation of ONCV pseudopotentials
,”
Comput. Phys. Commun.
196
,
36
44
(
2015
).
74.
M. J.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M. J.
Verstraete
,
D. R.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
75.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
, “
Pseudopotentials for high-throughput DFT calculations
,”
Comput. Mater. Sci.
81
,
446
452
(
2014
).
76.
A.
Dal Corso
, “
Pseudopotentials periodic table: From H to Pu
,”
Comput. Mater. Sci.
95
,
337
350
(
2014
).
77.
M.
Topsakal
and
R. M.
Wentzcovitch
, “
Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu)
,”
Comput. Mater. Sci.
95
,
263
270
(
2014
).
78.
M.
Quirós
,
S.
Gražulis
,
S.
Girdzijauskaitė
,
A.
Merkys
, and
A.
Vaitkus
, “
Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database
,”
J. Cheminf.
10
(
1
),
23
(
2018
).
79.
A.
Merkys
,
A.
Vaitkus
,
J.
Butkus
,
M.
Okulič-Kazarinas
,
V.
Kairys
, and
S.
Gražulis
, “
COD::CIF::Parser: An error-correcting CIF parser for the Perl language
,”
J. Appl. Crystallogr.
49
(
1
),
292
(
2016
).
80.
S.
Gražulis
,
A.
Merkys
,
A.
Vaitkus
, and
M.
Okulič-Kazarinas
, “
Computing stoichiometric molecular composition from crystal structures
,”
J. Appl. Crystallogr.
48
(
1
),
85
91
(
2015
).
81.
S.
Gražulis
,
A.
Daškevič
,
A.
Merkys
,
D.
Chateigner
,
L.
Lutterotti
,
M.
Quirós
,
N. R.
Serebryanaya
,
M.
Peter
,
R. T.
Downs
, and
A.
Le Bail
, “
Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration
,”
Nucleic Acids Res.
40
(
D1
),
D420
D427
(
2012
).
82.
S.
Gražulis
,
D.
Chateigner
,
R. T.
Downs
,
A. F. T.
Yokochi
,
M.
Quirós
,
L.
Lutterotti
,
E.
Manakova
,
J.
Butkus
,
M.
Peter
, and
A.
Le Bail
, “
Crystallography Open Database—An open-access collection of crystal structures
,”
J. Appl. Crystallogr.
42
(
4
),
726
729
(
2009
).
83.
R. T.
Downs
and
M.
Hall-Wallace
, “
The American Mineralogist crystal structure database
,”
Am. Mineral.
88
,
247
250
(
2003
).
84.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
de Gironcoli
,
P.
Delugas
,
F. F.
Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,” available in the Materials Cloud Archive at .
85.

Although as a rule the code should be executed with one MPI per GPU card, over-subscription of the GPU can lead to significant speedups, especially for small test cases. Nonetheless, over-subscription by more than a factor of 4 is seldom useful.

86.

This can be appreciated by comparing simulations that required similar computational time on the CPU but used different pseudopotential sets, for example, the O10P2Ti and CaN2Si columns on the right panel of Fig. 2.

88.
See https://www.european-processor-initiative.eu/project/epi/ for European processor initiative.
90.
See http://foundation.quantum-espresso.org for the Quantum ESPRESSO foundation.
You do not currently have access to this content.