Determining the influence of the solvent on electrochemical reaction energetics is a central challenge in our understanding of electrochemical interfaces. To date, it is unclear how well existing methods predict solvation energies at solid/liquid interfaces, since they cannot be assessed experimentally. Ab initio molecular dynamics (AIMD) simulations present a physically highly accurate, but also a very costly approach. In this work, we employ extensive AIMD simulations to benchmark solvation at charge-neutral metal/water interfaces against commonly applied continuum solvent models. We consider a variety of adsorbates including *CO, *CHO, *COH, *OCCHO, *OH, and *OOH on Cu, Au, and Pt facets solvated by water. The surfaces and adsorbates considered are relevant, among other reactions, to electrochemical CO2 reduction and the oxygen redox reactions. We determine directional hydrogen bonds and steric water competition to be critical for a correct description of solvation at the metal/water interfaces. As a consequence, we find that the most frequently applied continuum solvation methods, which do not yet capture these properties, do not presently provide more accurate energetics over simulations in vacuum. We find most of the computed benchmark solvation energies to linearly scale with hydrogen bonding or competitive water adsorption, which strongly differ across surfaces. Thus, we determine solvation energies of adsorbates to be non-transferable between metal surfaces, in contrast to standard practice.

1.
O. M.
Magnussen
and
A.
Groß
,
J. Am. Chem. Soc.
141
,
4777
(
2019
).
2.
J.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J.
Kitchin
,
T.
Bligaard
, and
H.
Jónsson
,
J. Phys. Chem. B
108
,
17886
(
2004
).
3.
S.
Schnur
and
A.
Groß
,
Catal. Today
165
,
129
(
2011
).
4.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
,
J. Chem. Phys.
136
,
064102
(
2012
).
5.
K.
Mathew
and
R. G.
Hennig
,
J. Chem. Phys.
151
,
234101
(
2019
).
6.
J.
Rossmeisl
,
E.
Skúlason
,
M. E.
Björketun
,
V.
Tripkovic
, and
J. K.
Nørskov
,
Chem. Phys. Lett.
466
,
68
(
2008
).
7.
V.
Tripković
,
E.
Skúlason
,
S.
Siahrostami
,
J. K.
Nørskov
, and
J.
Rossmeisl
,
Electrochim. Acta
55
,
7975
(
2010
).
8.
C.
Taylor
,
R. G.
Kelly
, and
M.
Neurock
,
J. Electrochem. Soc.
153
,
E207
(
2006
).
9.
S.
Schnur
and
A.
Groß
,
New J. Phys.
11
,
125003
(
2009
).
10.
J.-B.
Le
and
J.
Cheng
,
Curr. Opin. Electrochem.
19
,
129
(
2019
).
11.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
12.
R.
Sundararaman
and
W. A.
Goddard
 III
,
J. Chem. Phys.
142
,
064107
(
2015
).
13.
R.
Sundararaman
and
K.
Schwarz
,
J. Chem. Phys.
146
,
084111
(
2017
).
14.
F.
Nattino
,
M.
Truscott
,
N.
Marzari
, and
O.
Andreussi
,
J. Chem. Phys.
150
,
041722
(
2019
).
15.
N. G.
Hörmann
,
O.
Andreussi
, and
N.
Marzari
,
J. Chem. Phys.
150
,
041730
(
2019
).
16.
T.
Ludwig
,
J. A.
Gauthier
,
K. S.
Brown
,
S.
Ringe
,
J. K.
Nørskov
, and
K.
Chan
,
J. Phys. Chem. C
123
,
5999
(
2019
).
17.
G.
Kastlunger
,
P.
Lindgren
, and
A. A.
Peterson
,
J. Phys. Chem. C
122
,
12771
(
2018
).
18.
J. A.
Gauthier
,
C. F.
Dickens
,
S.
Ringe
, and
K.
Chan
,
ChemPhysChem
20
,
3074
(
2019
).
19.
J. A.
Gauthier
,
C. F.
Dickens
,
H. H.
Heenen
,
S.
Vijay
,
S.
Ringe
, and
K.
Chan
,
J. Chem. Theory Comput.
15
,
6895
(
2019
).
20.
N. G.
Hörmann
,
Z.
Guo
,
F.
Ambrosio
,
O.
Andreussi
,
A.
Pasquarello
, and
N.
Marzari
,
npj Comput. Mater.
5
,
100
(
2019
).
21.
M. M.
Melander
,
M. J.
Kuisma
,
T. E. K.
Christensen
, and
K.
Honkala
,
J. Chem. Phys.
150
,
041706
(
2019
).
22.
S.
Surendralal
,
M.
Todorova
,
M. W.
Finnis
, and
J.
Neugebauer
,
Phys. Rev. Lett.
120
,
246801
(
2018
).
23.
R.
Khatib
,
A.
Kumar
,
S.
Sanvito
,
M.
Sulpizi
, and
C. S.
Cucinotta
, arXiv:1905.11850 (
2019
).
24.
H. H.
Kristoffersen
and
J. H.
Chang
,
Computational Photocatalysis: Modeling of Photophysics and Photochemistry at Interfaces
(
ACS Publications
,
2019
), pp.
225
238
.
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
26.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
27.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
28.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
29.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
30.
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
211
(
2011
).
31.
K.
Tonigold
and
A.
Groß
,
J. Comput. Chem.
33
,
695
(
2012
).
32.
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Groß
,
J. Chem. Phys.
144
,
194701
(
2016
).
33.
S.
Sakong
and
A.
Groß
,
J. Chem. Phys.
149
,
084705
(
2018
).
34.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
35.
S.
Nosé
,
Prog. Theor. Phys. Suppl.
103
,
1
(
1991
).
36.
D. M.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
46
,
13756
(
1992
).
37.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
38.
L.
Bengtsson
,
Phys. Rev. B
59
,
12301
(
1999
).
39.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
,
J. Phys. Condens. Matter
29
,
273002
(
2017
).
40.
D.
Gunceler
,
K.
Letchworth-Weaver
,
R.
Sundararaman
,
K. A.
Schwarz
, and
T. A.
Arias
,
Model. Simul. Mater. Sci. Eng.
21
,
074005
(
2013
).
41.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys. Condens. Matter
21
,
395502
(
2009
).
42.
S. K.
Natarajan
and
J.
Behler
,
Phys. Chem. Chem. Phys.
18
,
28704
(
2016
).
43.
H. H.
Kristoffersen
,
J.-E.
Shea
, and
H.
Metiu
,
J. Phys. Chem. Lett.
6
,
2277
(
2015
).
44.
H. H.
Kristoffersen
,
T.
Vegge
, and
H. A.
Hansen
,
Chem. Sci.
9
,
6912
(
2018
).
45.
E.
Gallicchio
,
M. M.
Kubo
, and
R. M.
Levy
,
J. Phys. Chem. B
104
,
6271
(
2000
).
46.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Akademic Press
,
1996
).
47.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
48.
J. R.
Boes
,
O.
Mamun
,
K.
Winther
, and
T.
Bligaard
,
J. Phys. Chem. A
123
,
2281
(
2019
).
49.
A. K.
Soper
,
F.
Bruni
, and
M. A.
Ricci
,
J. Chem. Phys.
106
,
247
(
1997
).
50.
P.
Gono
,
F.
Ambrosio
, and
A.
Pasquarello
,
J. Phys. Chem. C
123
,
18467
(
2019
).
51.
J. K.
Nørskov
,
F.
Studt
,
F.
Abild-Pedersen
, and
T.
Bligaard
,
Fundamental Concepts in Heterogeneous Catalysis
(
John Wiley & Sons, Inc.
,
2014
).
52.
R.
Mills
,
J. Phys. Chem.
77
,
685
(
1973
).
53.
I.-C.
Lin
,
A. P.
Seitsonen
,
I.
Tavernelli
, and
U.
Rothlisberger
,
J. Chem. Theory Comput.
8
,
3902
(
2012
).
54.
A.
Groß
,
F.
Gossenberger
,
X.
Lin
,
M.
Naderian
,
S.
Sakong
, and
T.
Roman
,
J. Electrochem. Soc.
161
,
E3015
(
2014
).
55.
F.
Abild-Pedersen
,
J.
Greeley
,
F.
Studt
,
J.
Rossmeisl
,
T.
Munter
,
P. G.
Moses
,
E.
Skulason
,
T.
Bligaard
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
99
,
016105
(
2007
).
56.
C. J.
Bodenschatz
,
S.
Sarupria
, and
R. B.
Getman
,
J. Phys. Chem. C
119
,
13642
(
2015
).
57.
V. J.
Bukas
,
H. W.
Kim
,
R.
Sengpiel
,
K.
Knudsen
,
J.
Voss
,
B. D.
McCloskey
, and
A. C.
Luntz
,
ACS Catal.
8
,
11940
(
2018
).
58.
X.
Liu
,
J.
Xiao
,
H.
Peng
,
X.
Hong
,
K.
Chan
, and
J. K.
Nørskov
,
Nat. Commun.
8
,
15438
(
2017
).
59.
X.
Liu
,
P.
Schlexer
,
J.
Xiao
,
Y.
Ji
,
L.
Wang
,
R. B.
Sandberg
,
M.
Tang
,
K. S.
Brown
,
H.
Peng
,
S.
Ringe
,
C.
Hahn
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
K.
Chan
,
Nat. Commun.
10
,
32
(
2019
).
60.
A. A.
Peterson
,
F.
Abild-Pedersen
,
F.
Studt
,
J.
Rossmeisl
, and
J. K.
Nørskov
,
Energy Environ. Sci.
3
,
1311
(
2010
).
61.
G.
Karlberg
,
Phys. Rev. B
74
,
153414
(
2006
).
62.
S.
Liu
,
M. G.
White
, and
P.
Liu
,
J. Phys. Chem. C
120
,
15288
(
2016
).
63.
J. A.
Gauthier
,
C. F.
Dickens
,
L. D.
Chen
,
A. D.
Doyle
, and
J. K.
Nørskov
,
J. Phys. Chem. C
121
,
11455
(
2017
).
64.
S.
Ringe
,
H.
Oberhofer
, and
K.
Reuter
,
J. Chem. Phys.
146
,
134103
(
2017
).
65.
C.
Hille
,
S.
Ringe
,
M.
Deimel
,
C.
Kunkel
,
W. E.
Acree
,
K.
Reuter
, and
H.
Oberhofer
,
J. Chem. Phys.
150
,
041710
(
2019
).
66.
O.
Andreussi
,
N. G.
Hörmann
,
F.
Nattino
,
G.
Fisicaro
,
S.
Goedecker
, and
N.
Marzari
,
J. Chem. Theory Comput.
15
,
1996
(
2019
).

Supplementary Material

You do not currently have access to this content.