Rotationally resolved electronic spectra of two conformational isomers of jet-cooled indole-4-carboxylic acid (I4CA) and the deuterated forms of the acid (—COOD) and amide (—ND) groups have been obtained using a UV laser/molecular beam spectrometer. The in-plane orientation of the acid group defines the two lowest energy rotamers of I4CA. The S1 ← S0 origin bands of the two rotamers and four isotopologues have been fit to asymmetric rotor Hamiltonians in both electronic states. From the best-fit parameters, the positions of the H-atoms in the principal axis frames of each conformer have been determined and serve to unambiguously identify the syn forms (i.e., COH⋯O) of the cis and trans rotamers. The experimental S0 and S1 inertial parameters, hydrogen atom positions, and transition dipole moment (TDM) orientations are compared with the results of theoretical calculations. The TDM orientation indicates that the S1 state is the 1La state in contrast to most substituted indoles. The molecular orbital properties and natural charges are investigated to better understand the 1La/1Lb state reversal and the extent of photoinduced intramolecular charge transfer that impacts the rotamer-dependent fluorescence lifetimes.

1.
N.
Kaushik
,
N.
Kaushik
,
P.
Attri
,
N.
Kumar
,
C.
Kim
,
A.
Verma
, and
E.
Choi
, “
Biomedical importance of indoles
,”
Molecules
18
,
6620
(
2013
).
2.
S.
Arnold
and
M.
Sulkes
, “
Fluorescence lifetimes of jet-cooled carbonyl-substituted indoles. Evidence of intramolecular charge transfer quenching
,”
Chem. Phys. Lett.
200
,
125
(
1992
).
3.
M.
Sulkes
and
S.
Arnold
, “
Direct measurements of fluorescence decays of selected conformers of tryptophan derivatives
,”
Proc. SPIE
1640
,
20
(
1992
).
4.
S.
Arnold
,
L.
Tong
, and
M.
Sulkes
, “
Fluorescence lifetimes of substituted indoles in solution and in free jets: Evidence for intramolecular charge-transfer quenching
,”
J. Phys. Chem.
98
,
2325
(
1994
).
5.
R. W.
Cowgill
, “
Fluorescence and protein structure: X. Reappraisal of solvent and structural effects
,”
Biochim. Biophys Acta
133
,
6
(
1967
).
6.
J. R.
Platt
, “
Classification of spectra of cata-condensed hydrocarbons
,”
J. Chem. Phys.
17
,
484
(
1949
).
7.
G.
Weber
, “
Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds
,”
Biochem. J.
75
,
335
(
1960
).
8.
P. R.
Callis
, “
Molecular orbital theory of the 1Lb and 1La states of indole
,”
J. Chem. Phys.
95
,
4230
(
1991
).
9.
G.
Berden
,
W. L.
Meerts
, and
E.
Jalviste
, “
Rotationally resolved ultraviolet spectroscopy of indole, indazole and benzimidazole: Inertial axis reorientation in the S1 (1Lb)←S0 transitions
,”
J. Chem. Phys.
103
,
9596
(
1995
).
10.
C.
Brand
,
J.
Küpper
,
D. W.
Pratt
,
W.
Leo Meerts
,
D.
Krügler
,
J.
Tatchen
, and
M.
Schmitt
, “
Vibronic coupling in indole: I. Theoretical description of the 1La1Lb interaction and the electronic spectrum
,”
Phys. Chem. Chem. Phys.
12
,
4968
(
2010
).
11.
J.
Küpper
,
D. W.
Pratt
,
W.
Leo Meerts
,
C.
Brand
,
J.
Tatchen
, and
M.
Schmitt
, “
Vibronic coupling in indole: II. Investigation of the 1La1Lb interaction using rotationally resolved electronic spectroscopy
,”
Phys. Chem. Chem. Phys.
12
,
4980
(
2010
).
12.
M.-L.
Hebestreit
,
M.
Schneider
,
H.
Lartian
,
V.
Betz
,
M.
Heinrich
,
M.
Lindic
,
M. Y.
Choi
, and
M.
Schmitt
, “
Structures, dipole moments and excited state lifetime of isolated 4-cyanoindole in its ground and lowest electronically excited singlet states
,”
Phys. Chem. Chem. Phys.
21
,
14766
(
2019
).
13.
M.
Wilke
,
C.
Brand
,
J.
Wilke
, and
M.
Schmitt
, “
Influence of the position of the methoxy group on the stabilities of the syn and anti conformers of 4-, 5- and 6-methoxyindole
,”
J. Mol. Spectrosc.
337
,
137
(
2017
).
14.
J.
Wilke
,
M.
Wilke
,
C.
Brand
,
J. D.
Spiegel
,
C. M.
Marian
, and
M.
Schmitt
, “
Modulation of the La/Lb mixing in an indole derivative: A position-dependent study using 4-, 5-, and 6-fluoroindole
,”
J. Phys. Chem. A
121
,
1597
(
2017
).
15.
J. W.
Petrich
,
M. C.
Chang
,
D. B.
McDonald
, and
G. R.
Fleming
, “
Nonexponential fluorescence decay of tryptophan, tryptophylglycine and glycyltryptophan
,”
J. Am. Chem. Soc.
105
,
3819
(
1983
).
16.
L. A.
Philips
,
S. P.
Webb
,
S. J.
Martinez
,
G. R.
Fleming
, and
D. H.
Levy
, “
Time-resolved spectroscopy of tryptophan conformers in a supersonic jet
,”
J. Am. Chem. Soc.
110
,
1352
(
1988
).
17.
D.
Creed
, “
The photophysics and photochemistry of the near-UV absorbing amino acids–I. Tryptophan and its simple derivatives
,”
Photochem. Photobiol.
39
,
537
(
1984
).
18.
D. F.
Plusquellic
,
S. R.
Davis
, and
F.
Jahanmir
, “
Probing nuclear quadrupole interactions in the rotationally resolved S1←S0 electronic spectrum of 2-chloronaphthalene
,”
J. Chem. Phys.
115
,
225
(
2001
).
19.
W.
Majewski
and
W. L.
Meerts
, “
Near-UV spectra with fully resolved rotational structure of naphthalene and perdeuterated naphthalene
,”
J. Mol. Spectrosc.
104
,
271
(
1984
).
20.
W. A.
Majewski
,
D. F.
Plusquellic
, and
D. W.
Pratt
, “
The rotationally resolved fluorescence excitation spectrum of 1-fluoronaphthalene
,”
J. Chem. Phys.
90
,
1362
(
1989
).
21.
E.
Riedle
,
S. H.
Ashworth
,
J. T.
Farrell
, Jr.
, and
D. J.
Nesbitt
, “
Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity
,”
Rev. Sci. Instrum.
65
,
42
(
1994
).
22.
D. F.
Plusquellic
,
R. D.
Suenram
,
B.
Maté
,
J. O.
Jensen
, and
A. C.
Samuels
, “
The conformational structures and dipole moments of ethyl sulfide in the gas phase
,”
J. Chem. Phys.
115
,
3057
(
2001
).
23.
W. A.
Majewski
,
J. F.
Pfanstiel
,
D. F.
Plusquellic
, and
D. W.
Pratt
,
Laser Techniques in Chemistry
, edited by
A. B.
Myers
and
T. R.
Rizzo
(
Wiley
,
New York
,
1995
), Vol. 23, p.
101
.
24.
R. J.
Lavrich
,
D. F.
Plusquellic
,
R. D.
Suenram
,
G. T.
Fraser
,
A. R. H.
Walker
, and
M. J.
Tubergen
, “
Experimental studies of peptide bonds: Identification of the C7eq conformation of the alanine dipeptide analog, N-acetyl-alanine N′-methylamide from torsion-rotation interactions
,”
J. Chem. Phys.
118
,
1253
(
2003
).
25.
S.
Gerstenkorn
and
P.
Luc
, “
Atlas du spectre d’absorption de la molecule de l’iode entire 14800–20000 cm−1 (Editions du C.N.R.S., 15, quai Anatole-France, 75700 Paris)
,”
R. Phys. Appl.
14
,
792
(
1979
).
26.
B. N.
Taylor
and
C. E.
Kuyatt
, NIST Technical Note 1297,
1994
, The publication may be downloaded from http://physics.nist.gov/Pubs/guidelines/contents.html.
27.
J. A.
Hageman
,
R.
Wehrens
,
R.
de Gelder
,
W. L.
Meerts
, and
L. M. C.
Buydens
, “
Fitting fluorescence spectra with genetic algorithms
,”
J. Chem. Phys.
113
,
7955
(
2000
).
28.
W. L.
Meerts
,
M.
Schmitt
, and
G. C.
Groenenboom
, “
New applications of the genetic algorithm for the interpretation of high-resolution spectra
,”
Can. J. Chem.
82
,
804
(
2004
).
29.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
30.
Y. R.
Wu
and
D. H.
Levy
, “
Determination of the geometry of deuterated tryptamine by rotationally resolved electronic spectroscopy
,”
J. Chem. Phys.
91
,
5278
(
1989
).
31.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
32.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements, H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
33.
G.
Scalmani
,
M. J.
Frisch
,
B.
Mennucci
,
J.
Tomasi
,
R.
Cammi
, and
V.
Barone
, “
Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model
,”
J. Chem. Phys.
124
,
094107
(
2006
).
34.
E. D.
Glendening
,
C. R.
Landis
, and
F.
Weinhold
, “
NBO 6.0: Natural bond orbital analysis program
,”
J. Comput. Chem.
34
,
1429
(
2013
).
35.
J. K. G.
Watson
, “
Approximations to the inertial defects of planar molecules
,”
J. Chem. Phys.
98
,
5302
(
1993
).
36.
G.
Berden
,
W. L.
Meerts
,
D. F.
Plusquellic
,
I.
Fujita
, and
D. W.
Pratt
, “
High resolution electronic spectroscopy of 1-aminonaphthalene: S0 and S1 geometries and S1←S0 transition moment orientations
,”
J. Chem. Phys.
104
,
3935
(
1996
).
37.
W.
Gordy
and
R. L.
Cook
,
Microwave Molecular Spectra
, 3rd ed. (
Wiley-Interscience
,
New York
,
1984
).
38.
C. C.
Costain
, “
Determination of molecular structures from ground state rotational constants
,”
J. Chem. Phys.
29
,
864
(
1958
).
39.
J. W.
Petrich
,
M. C.
Chang
,
D. B.
McDonald
, and
G. R.
Fleming
, “
On the origin of nonexponential fluorescence decay in tryptophan and its derivatives
,”
J. Am. Chem. Soc.
105
,
3824
(
1983
).
40.
J. R.
Johnson
,
K. D.
Jordan
,
D. F.
Plusquellic
, and
D. W.
Pratt
, “
High resolution S1←S0 fluorescence excitation spectra of the 1- and 2-hydroxynaphthalenes. Distinguishing the cis and trans rotamers
,”
J. Chem. Phys.
93
,
2258
(
1990
).
41.
L. A.
Philips
and
D. H.
Levy
, “
The rotationally resolved electronic spectrum of indole in the gas phase
,”
J. Chem. Phys.
85
,
1327
(
1986
).
42.
C. M.
Isborn
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
Excited-state electronic structure with configuration interaction singles and Tamm–Dancoff time-dependent density functional theory on graphical processing units
,”
J. Chem. Theory Comput.
7
,
1814
(
2011
).
43.
S.
Jagannathan
and
D. W.
Pratt
, “
The fluorescence excitation spectrum of 1-naphthoic acid at rotational resolution: S0 and S1 potential energy surfaces along the R–COOH torsional coordinate
,”
J. Chem. Phys.
100
,
1874
(
1994
).
44.
Y.
Huang
and
M.
Sulkes
, “
Anomalously short fluroescence lifetimes in jet cooled 4-hydroxyindole. Evidence for excited state tautomerism and proton transfer in clusters
,”
Chem. Phys. Lett.
254
,
242
(
1996
).
45.
C.
Brand
,
O.
Oeltermann
,
M.
Wilke
, and
M.
Schmitt
, “
Position matters: High resolution spectroscopy of 6-MethoxyIndole
,”
J. Chem. Phys.
138
,
024321
(
2013
).
46.
R. W.
Ricci
and
J. M.
Nesta
, “
Inter- and intramolecular quenching on indole fluorescence by carbonyl compounds
,”
J. Phys. Chem.
80
,
974
(
1975
).
47.
J. J.
Hopfield
, “
Electron transfer between biological molecules by thermally activated tunneling
,”
Proc. Natl. Acad. Sci. U. S. A.
71
,
3640
(
1974
).
48.
M. A.
El-Sayed
, “
The triplet state: Its radiative and nonradiative properties
,”
Acc. Chem. Res.
1
,
8
(
1968
).
49.
B.
Joo
and
E.-G.
Kim
, “
Model-independent determination of the degree of charge transfer in molecular and metal complexes
,”
Chem. Commun.
51
,
15071
(
2015
).
50.
D. F.
Plusquellic
,
X. Q.
Tan
, and
D. W.
Pratt
, “
Acid-base chemistry in the gas phase. The cis- and trans-2-naphthol-NH3 complexes in their S0 and S1 states
,”
J. Chem. Phys.
96
,
8026
(
1992
).

Supplementary Material

You do not currently have access to this content.