The superposition of atomic potentials (SAP) approach has recently been shown to be a simple and efficient way to initialize electronic structure calculations [S. Lehtola, J. Chem. Theory Comput. 15, 1593–1604 (2019)]. Here, we study the differences between effective potentials from fully numerical density functional and optimized effective potential calculations for fixed configurations. We find that the differences are small, overall, and choose exchange-only potentials at the local density approximation level of theory computed on top of Hartree–Fock densities as a good compromise. The differences between potentials arising from different atomic configurations are also found to be small at this level of theory. Furthermore, we discuss the efficient Gaussian-basis implementation of SAP via error function fits to fully numerical atomic radial potentials. The guess obtained from the fitted potentials can be easily implemented in any Gaussian-basis quantum chemistry code in terms of two-electron integrals. Fits covering the whole periodic table from H to Og are reported for non-relativistic as well as fully relativistic four-component calculations that have been carried out with fully numerical approaches.

1.
S.
Lehtola
, “
Assessment of initial guesses for self-consistent field calculations. Superposition of atomic potentials: Simple yet efficient
,”
J. Chem. Theory Comput.
15
,
1593
1604
(
2019
); arXiv:1810.11659.
2.
A. E. S.
Green
,
D. L.
Sellin
, and
A. S.
Zachor
, “
Analytic independent-particle model for atoms
,”
Phys. Rev.
184
,
1
9
(
1969
).
3.
J. E.
Whalen
and
A. E. S.
Green
, “
Analytic independent particle model for molecules
,”
Am. J. Phys.
40
,
1484
1489
(
1972
).
4.
F.
Nazari
and
J. L.
Whitten
, “
Prediction of many-electron wavefunctions using atomic potentials
,”
J. Chem. Phys.
146
,
194109
(
2017
).
5.
J. L.
Whitten
, “
Prediction of many-electron wavefunctions using atomic potentials: Refinements and extensions to transition metals and large systems
,”
J. Chem. Phys.
150
,
034107
(
2019
); arXiv:1812.11820.
6.
J. L.
Whitten
, “
Prediction of many-electron wavefunctions using atomic potentials: Extended basis sets and molecular dissociation
,”
Phys. Chem. Chem. Phys.
21
,
21541
21548
(
2019
).
7.
S.
Lehtola
, “
A review on non-relativistic, fully numerical electronic structure calculations on atoms and diatomic molecules
,”
Int. J. Quantum Chem.
119
,
e25968
(
2019
); arXiv:1902.01431.
8.
S.
Lehtola
, “
Fully numerical calculations on atoms with fractional occupations and range-separated exchange functionals
,”
Phys. Rev. A
101
,
012516
(
2020
); arXiv:1908.02528.
9.
D. N.
Laikov
and
K. R.
Briling
, “
Atomic effective potentials for starting molecular electronic structure calculations
,”
Theor. Chem. Acc.
139
,
17
(
2020
); arXiv:1902.03212.
10.
S.
Lehtola
, “
Superposition of atomic potentials: A simple yet efficient orbital guess for self-consistent field calculations
,” arXiv:1810.11659v1 (
2018
).
11.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
518
(
1993
).
12.
L.
Visscher
and
K. G.
Dyall
, “
Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions
,”
At. Data Nucl. Data Tables
67
,
207
224
(
1997
).
13.
D.
Andrae
, “
Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules
,”
Phys. Rep.
336
,
413
525
(
2000
).
14.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
15.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
16.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
17.
S.
Lehtola
, ERKALE—HF/DFT from Hel,
2018
.
18.
J.
Lehtola
,
M.
Hakala
,
A.
Sakko
, and
K.
Hämäläinen
, “
ERKALE—A flexible program package for X-ray properties of atoms and molecules
,”
J. Comput. Chem.
33
,
1572
1585
(
2012
).
19.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
20.
S.
Lehtola
, HelFEM—Finite Element Methods for Electronic Structure Calculations on Small Systems,
2018
.
21.
S.
Lehtola
, “
Fully numerical Hartree–Fock and density functional calculations. I. Atoms
,”
Int. J. Quantum Chem.
119
,
e25945
(
2019
); arXiv:1810.11651.
22.
S.
Lehtola
, “
Fully numerical Hartree–Fock and density functional calculations. II. Diatomic molecules
,”
Int. J. Quantum Chem.
119
,
e25944
(
2019
); arXiv:1810.11653.
23.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
,
4597
(
1993
).
24.
ADF 2019.3, SCM, Theoretical Chemistry,
Vrije Universiteit
,
Amsterdam, The Netherlands
,
2019
.
25.
S. F.
Boys
, “
Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system
,”
Proc. R. Soc. London, Ser. A
200
,
542
554
(
1950
).
26.
L. E.
McMurchie
and
E. R.
Davidson
, “
One- and two-electron integrals over cartesian gaussian functions
,”
J. Comput. Phys.
26
,
218
231
(
1978
).
27.
S.
Obara
and
A.
Saika
, “
Efficient recursive computation of molecular integrals over Cartesian Gaussian functions
,”
J. Chem. Phys.
84
,
3963
(
1986
).
28.
R.
Ahlrichs
, “
Efficient evaluation of three-center two-electron integrals over Gaussian functions
,”
Phys. Chem. Chem. Phys.
6
,
5119
(
2004
).
29.
P.-O.
Löwdin
, “
Quantum theory of cohesive properties of solids
,”
Adv. Phys.
5
,
1
171
(
1956
).
30.
S.
Lehtola
,
F.
Blockhuys
, and
C.
Van Alsenoy
, “
An overview of self-consistent field calculations within finite basis sets
,”
Molecules
25
,
1218
(
2020
); arXiv:1912.12029.
31.
D. F.
Feller
and
K.
Ruedenberg
, “
Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations
,”
Theor. Chim. Acta
52
,
231
251
(
1979
).
32.
S.
Lehtola
, “
Polarized universal hydrogenic Gaussian basis sets from one-electron ions
,”
J. Chem. Phys.
152
,
134108
(
1979
).
33.
O.
Fossgaard
and
T.
Saue
, “
LDA potential implementation in GRASP
” (unpublished) (
2002
).
34.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
, “
GRASP: A general-purpose relativistic atomic structure program
,”
Comput. Phys. Commun.
55
,
425
456
(
1989
).
35.
E.
Engel
and
S. H.
Vosko
, “
Accurate optimized-potential-model solutions for spherical spin-polarized atoms: Evidence for limitations of the exchange-only local spin-density and generalized-gradient approximations
,”
Phys. Rev. A
47
,
2800
2811
(
1993
).
36.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
, “
Exact relations in the optimized effective potential method employing an arbitrary Exc]
,”
Phys. Lett. A
148
,
470
474
(
1990
).
37.
F.
Bloch
, “
Bemerkung zur elektronentheorie des ferromagnetismus und der elektrischen Leitfähigkeit
,”
Z. Phys.
57
,
545
555
(
1929
).
38.
P. A. M.
Dirac
, “
Note on exchange phenomena in the Thomas atom
,”
Math. Proc. Cambridge Philos. Soc.
26
,
376
385
(
1930
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
40.
E.
Engel
and
S. H.
Vosko
, “
Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations
,”
Phys. Rev. B
47
,
13164
13174
(
1993
).
41.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
, “
Ions in solution: Density corrected density functional theory (DC-DFT)
,”
J. Chem. Phys.
140
,
18A528
(
2014
); arXiv:1403.1671.
42.
S.
Vuckovic
,
S.
Song
,
J.
Kozlowski
,
E.
Sim
, and
K.
Burke
, “
Density functional analysis: The theory of density-corrected DFT
,”
J. Chem. Theory Comput.
15
,
6636
6646
(
2019
); arXiv:1908.05721.
43.
J. P.
Perdew
,
J.
Sun
,
A.
Ruzsinszky
,
P. D.
Mezei
, and
G. I.
Csonka
, “
Why density functionals should not be judged primarily by atomization energies
,”
Period. Polytech., Chem. Eng.
60
,
2
7
(
2016
).
44.
M.
Bühl
and
H.
Kabrede
, “
Geometries of transition-metal complexes from density-functional theory
,”
J. Chem. Theory Comput.
2
,
1282
1290
(
2006
).
45.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
46.
J. P.
Perdew
, “
Density-functional approximation for the correlation energy of the inhomogeneous electron gas
,”
Phys. Rev. B
33
,
8822
8824
(
1986
).
47.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
, “
Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr
,”
J. Chem. Phys.
119
,
12753
(
2003
).
48.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
49.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
50.
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Chemistry WebBook
, NIST Standard Reference Database Number 69 (
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2020
).
51.
M.
Kimura
,
V.
Schomaker
,
D. W.
Smith
, and
B.
Weinstock
, “
Electron-diffraction investigation of the hexafluorides of tungsten, osmium, iridium, uranium, neptunium, and plutonium
,”
J. Chem. Phys.
48
,
4001
4012
(
1968
).
52.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr
,”
Theor. Chem. Acc.
117
,
491
500
(
2006
).
53.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements
,”
J. Phys. Chem. A
113
,
12638
12644
(
2009
).
54.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar
,”
Theor. Chem. Acc.
135
,
128
(
2016
).
55.
L.
Visscher
, “
Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction
,”
Theor. Chim. Acta
98
,
68
70
(
1997
).
56.
J.
Almlöf
,
K.
Faegri
, and
K.
Korsell
, “
Principles for a direct SCF approach to LCAO-MO ab-initio calculations
,”
J. Comput. Chem.
3
,
385
399
(
1982
).
57.
J. H.
Van Lenthe
,
R.
Zwaans
,
H. J. J.
Van Dam
, and
M. F.
Guest
, “
Starting SCF calculations by superposition of atomic densities
,”
J. Comput. Chem.
27
,
926
932
(
2006
).
58.
M. J. P.
Hodgson
,
E.
Kraisler
,
A.
Schild
, and
E. K. U.
Gross
, “
How interatomic steps in the exact Kohn–Sham potential relate to derivative discontinuities of the energy
,”
J. Phys. Chem. Lett.
8
,
5974
5980
(
2017
); arXiv:1706.00586.

Supplementary Material

You do not currently have access to this content.