The oxidation of glycerol under alkaline conditions in the presence of a heterogeneous catalyst can be tailored to the formation of lactic acid, an important commodity chemical. Despite recent advances in this area, the mechanism for its formation is still a subject of contention. In this study, we use a model 1 wt. % AuPt/TiO2 catalyst to probe this mechanism by conducting a series of isotopic labeling experiments with 1,3-13C glycerol. Optimization of the reaction conditions was first conducted to ensure high selectivity to lactic acid in the isotopic labeling experiments. Selectivity to lactic acid increased with temperature and concentration of NaOH, but increasing the O2 pressure appeared to influence only the rate of reaction. Using 1,3-13C glycerol, we demonstrate that conversion of pyruvaldehyde to lactic acid proceeds via a base-promoted 1,2-hydride shift. There was no evidence to suggest that this occurs via a 2,1-methide shift under the conditions used in this study.

1.
U. I.
Nda-Umar
,
I.
Ramli
,
Y. H.
Taufiq-Yap
, and
E. N.
Muhamad
,
Catalysts
9
,
15
(
2019
).
2.
L.
Prati
and
M.
Rossi
,
J. Catal.
176
,
552
(
1998
).
3.
G.
Dodekatos
,
S.
Schünemann
, and
H.
Tüysüz
,
ACS Catal.
8
,
6301
(
2018
).
4.
C.-H.
Zhou
,
J. N.
Beltramini
,
Y.-X.
Fan
, and
G. Q.
Lu
,
Chem. Soc. Rev.
37
,
527
(
2008
).
5.
Y.
Wang
,
Y.
Xiao
, and
G.
Xiao
,
Chin. J. Chem. Eng.
27
,
1536
(
2019
).
6.
A.
Villa
,
N.
Dimitratos
,
C. E.
Chan-Thaw
,
C.
Hammond
,
L.
Prati
, and
G. J.
Hutchings
,
Acc. Chem. Res.
48
,
1403
(
2015
).
7.
N.
Razali
and
A. Z.
Abdullah
,
Appl. Catal. A Gen.
543
,
234
(
2017
).
8.
J.
Fu
,
Q.
He
,
P. J.
Miedziak
,
G. L.
Brett
,
X.
Huang
,
S.
Pattisson
,
M.
Douthwaite
, and
G. J.
Hutchings
,
Chem.: A Eur. J.
24
,
2396
(
2018
).
9.
D.
Wang
,
A.
Villa
,
D.
Su
,
L.
Prati
, and
R.
Schlögl
,
ChemCatChem
5
,
2717
(
2013
).
10.
H.
Yin
,
C.
Zhang
,
H.
Yin
,
D.
Gao
,
L.
Shen
, and
A.
Wang
,
Chem. Eng. J.
288
,
332
(
2016
).
11.
H.
Yin
,
H.
Yin
,
A.
Wang
,
L.
Shen
,
Y.
Liu
, and
Y.
Zheng
,
J. Nanosci. Nanotechnol.
17
,
1255
(
2017
).
12.
D.
Roy
,
B.
Subramaniam
, and
R. V.
Chaudhari
,
ACS Catal.
1
,
548
(
2011
).
13.
S. A.
Zavrazhnov
,
A. L.
Esipovich
,
S. M.
Danov
,
S. Y.
Zlobin
, and
A. S.
Belousov
,
Kinet. Catal.
59
,
459
(
2018
).
14.
R.
Abdullah
,
S. N.
Mohamed Saleh
,
K.
Embong
, and
A. Z.
Abdullah
,
Chem. Eng. Commun.
1
,
1
(
2019
).
15.
Z.
Tang
,
S. L.
Fiorilli
,
H. J.
Heeres
, and
P. P.
Pescarmona
,
ACS Sustainable Chem. Eng.
6
,
10923
(
2018
).
16.
K. M. A.
Santos
,
E. M.
Albuquerque
,
G.
Innocenti
,
L. E. P.
Borges
,
C.
Sievers
, and
M. A.
Fraga
,
ChemCatChem
11
,
3054
(
2019
).
17.
R. K. P.
Purushothaman
,
J.
van Haveren
,
D. S.
van Es
,
I.
Melián-Cabrera
,
J. D.
Meeldijk
, and
H. J.
Heeres
,
Appl. Catal. B Environ.
147
,
92
(
2014
).
18.
V.
A. Yaylayan
,
S.
Harty-Majors
, and
A.
A. Ismail
,
Carbohydr. Res.
318
,
20
(
1999
).
19.
R. W.
Nagorski
and
J. P.
Richard
,
J. Am. Chem. Soc.
123
,
794
(
2001
).
20.
A.
Villa
,
D.
Wang
,
G. M.
Veith
,
F.
Vindigni
, and
L.
Prati
,
Catal. Sci. Technol.
3
,
3036
(
2013
).
21.
V.
Peneau
,
Q.
He
,
G.
Shaw
,
S. A.
Kondrat
,
T. E.
Davies
,
P.
Miedziak
,
M.
Forde
,
N.
Dimitratos
,
C. J.
Kiely
, and
G. J.
Hutchings
,
Phys. Chem. Chem. Phys.
15
,
10636
(
2013
).
22.
X.
Wang
,
S. O.
Pehkonen
,
J.
Rämö
,
M.
Väänänen
,
J. G.
Highfield
, and
K.
Laasonen
,
Catal. Sci. Technol.
2
,
784
(
2012
).
23.
B. N.
Zope
,
D. D.
Hibbitts
,
M.
Neurock
, and
R. J.
Davis
,
Science
330
,
74
(
2010
).
24.
W. C.
Ketchie
,
M.
Murayama
, and
R. J.
Davis
,
Top. Catal.
44
,
307
(
2007
).
25.
Q.
Gu
,
P.
Sautet
, and
C.
Michel
,
ACS Catal.
8
,
11716
(
2018
).
26.
W.
Xing
,
G.
Yin
, and
J.
Zhang
,
Rotating Electrode Methods and Oxygen Reduction Electrocatalysts
(
Elsevier
,
2014
).
27.
A.
Schumpe
,
I.
Adler
, and
W.-D.
Deckwer
,
Biotechnol. Bioeng.
20
,
145
(
1978
).
28.
J.
Díaz
,
E.
Skrzyńska
,
J.-S.
Girardon
,
M.
Capron
,
F.
Dumeignil
, and
P.
Fongarland
,
ChemEngineering
1
,
7
(
2017
).
29.
S.
Demirel
,
M.
Lucas
,
J.
Wärnå
,
T.
Salmi
,
D.
Murzin
, and
P.
Claus
,
Top. Catal.
44
,
299
(
2007
).
30.
T. A.
Ntho
,
P.
Gqogqa
, and
J. L.
Aluha
,
Advanced Chemical Kinetics
(
IntechOpen
,
2018
).
31.
A.
Villa
,
A.
Jouve
,
F. J.
Sanchez Trujillo
,
D.
Motta
,
L.
Prati
, and
N.
Dimitratos
,
Catalysts
8
,
54
(
2018
).
You do not currently have access to this content.