Ab initio molecular dynamics simulations at the air/water interface are carried out and elucidate a clear bump-like shoulder band at ∼3600 cm−1 in the imaginary part of the second order nonlinear susceptibility measured by phase-sensitive or heterodyne-detected vibrational sum frequency generation spectroscopy. The structure of the weakly interacting (WI) OH bond producing this band is found by first-principles simulation. WI OH is the OH bond directing toward the vapor phase and is somewhat buried in the Gibbs dividing surface of water, which is a characteristic structure at the air/water interface. The WI OH vibration tends to couple with the combination band between a neighboring hydrogen-bonded OH vibration and its bonding intermolecular oxygen–oxygen vibration.

1.
P.
Jungwirth
,
B. J.
Finlayson-Pitts
, and
D. J.
Tobias
, “
Introduction: Structure and chemistry at aqueous interfaces
,”
Chem. Rev.
106
,
1137
(
2006
).
2.
O.
Björneholm
,
M.
Hansen
,
A.
Hodgson
,
L.
Liu
,
D.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
 et al., “
Water at interfaces
,”
Chem. Rev.
116
,
7698
(
2016
).
3.
Y. R.
Shen
,
Fundamentals of Sum-Frequency Spectroscopy
(
Cambridge University Press
,
Cambridge
,
2016
).
4.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
,
129
(
2013
).
5.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
, “
Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation
,”
Annu. Rev. Phys. Chem.
64
,
579
(
2013
).
6.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study
,”
J. Chem. Phys.
130
,
204704
(
2009
).
7.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
, “
New information on water interfacial structure revealed by phase-sensitive surface spectroscopy
,”
Phys. Rev. Lett.
100
,
096102
(
2008
).
8.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
, “
Unified molecular view of air/water interface based on experimental and theoretical chi spectra of isotopically diluted water surface
,”
J. Am. Chem. Soc.
133
,
16875
(
2011
).
9.
X.
Chen
,
W.
Hua
,
Z.
Huang
, and
H. C.
Allen
, “
Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy
,”
J. Am. Chem. Soc.
132
,
11336
(
2010
).
10.
S.
Nihonyanagi
,
R.
Kusaka
,
K.
Inoue
,
A.
Adhikari
,
S.
Yamaguchi
, and
T.
Tahara
, “
Accurate determination of complex χ(2) spectrum of the air/water interface
,”
J. Chem. Phys.
143
,
124707
(
2015
).
11.
S.
Yamaguchi
, “
Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface
,”
J. Chem. Phys.
143
,
034202
(
2015
).
12.
S.
Sun
,
R.
Liang
,
X.
Xu
,
H.
Zhu
,
Y.
Shen
, and
C.
Tian
, “
Phase reference in phase-sensitive sum-frequency vibrational spectroscopy
,”
J. Chem. Phys.
144
,
244711
(
2016
).
13.
A.
Mafi
,
D.
Hu
, and
K.
Chou
, “
Interactions of sulfobetaine zwitterionic surfactants with water on water surface
,”
Langmuir
32
,
10905
(
2016
).
14.
N.
Takeshita
,
M.
Okuno
, and
T.
Ishibashi
, “
Molecular conformation of DPPC phospholipid Langmuir and Langmuir—Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
19
,
2060
(
2017
).
15.
W.
Sung
,
Z.
Avazbaeva
, and
D.
Kim
, “
Salt promotes protonation of amine groups at air/water interface
,”
J. Phys. Chem. Lett.
8
,
3601
(
2017
).
16.
W.
Smit
,
J.
Versluis
,
E.
Backus
,
M.
Bonn
, and
H.
Bakker
, “
Reduced near-resonant vibrational coupling at the surfaces of liquid water and ice
,”
J. Phys. Chem. Lett.
9
,
1290
(
2018
).
17.
Y. R.
Shen
and
V.
Ostroverkhov
, “
Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces
,”
Chem. Rev.
106
,
1140
(
2006
).
18.
X.
Xu
,
Y.
Shen
, and
C.
Tian
, “
Phase-sensitive sum frequency vibrational spectroscopic study of air/water interfaces: H2O, D2O, and diluted isotopic mixtures
,”
J. Chem. Phys.
150
,
144701
(
2019
).
19.
T.
Ishiyama
and
A.
Morita
, “
Nuclear quantum effect on the χ(2) band shape of vibrational sum frequency generation spectra of normal and deuterated water surfaces
,”
J. Phys. Chem. Lett.
10
,
5070
(
2019
).
20.
A.
Morita
,
Theory of Sum Frequency Generation Spectroscopy
(
Springer
,
2018
).
21.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
, “
Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces
,”
Chem. Rev.
114
,
8447
(
2014
).
22.
Y.
Ni
and
J.
Skinner
, “
Vibrational sum-frequency spectrum of the air-water interface
,”
J. Chem. Phys.
145
,
031103
(
2016
).
23.
G.
Medders
and
F.
Paesani
, “
Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum
,”
J. Am. Chem. Soc.
138
,
3912
(
2016
).
24.
N.
Kaliannan
,
A.
Aristizabal
,
H.
Wiebeler
,
F.
Zysk
,
T.
Ohto
,
Y.
Nagata
, and
T.
Kühne
, “
Impact of intermolecular vibrational coupling effects on the sum-frequency generation spectra of the water/air interface
,”
Mol. Phys.
118
,
1620358
(
2019
).
25.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
(
2013
).
26.
T.
Ohto
,
K.
Usui
,
T.
Hasegawa
,
M.
Bonn
, and
Y.
Nagata
, “
Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function
,”
J. Chem. Phys.
143
,
124702
(
2015
).
27.
S.
Pezzotti
,
D.
Galimberti
, and
M.
Gaigeot
, “
2D H-bond network as the topmost skin to the air-water interface
,”
J. Phys. Chem. Lett.
8
,
3133
(
2017
).
28.
C.
Liang
,
J.
Jeon
, and
M.
Cho
, “
Ab initio modeling of the vibrational sum-frequency generation spectrum of interfacial water
,”
J. Phys. Chem. Lett.
10
,
1153
(
2019
).
29.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
, “
Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy
,”
Nature
474
,
192
(
2011
).
30.
Y.
Suzuki
,
Y.
Nojima
, and
S.
Yamaguchi
, “
Vibrational coupling at the topmost surface of water revealed by heterodyne-detected sum frequency generation spectroscopy
,”
J. Phys. Chem. Lett.
8
,
1396
(
2017
).
31.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
Cp2k: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
32.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
(
2005
).
33.
A.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
34.
C.
Lee
,
W.
Yang
, and
R.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
35.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
36.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
(
2011
).
37.
D.
Smith
,
L.
Burns
,
K.
Patkowski
, and
C.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
(
2016
).
38.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
39.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
(
1983
).
40.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
, and
D.
Van Der Spoel
 et al., “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
(
2013
).
41.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
42.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
43.
P. H.
Berens
,
S. R.
White
, and
K. R.
Wilson
, “
Molecular dynamics and spectra. II. Diatomic Raman
,”
J. Chem. Phys.
75
,
515
(
1981
).
44.
J. S.
Bader
and
B. J.
Berne
, “
Quantum and classical relaxation rates from classical simulations
,”
J. Chem. Phys.
100
,
8359
(
1994
).
45.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
, “
Quantum dynamics and vibrational relaxation
,”
J. Phys. Chem. A
103
,
9494
(
1999
).
46.
B. M.
Auer
and
J. L.
Skinner
, “
IR and Raman spectra of liquid water: Theory and interpretation
,”
J. Chem. Phys.
128
,
224511
(
2008
).
47.
S.
Corcelli
and
J.
Skinner
, “
Infrared and Raman line shapes of dilute HOD in liquid H2O and D2O from 10 to 90 °C
,”
J. Phys. Chem. A
109
,
6154
(
2005
).
48.
T.
Ishiyama
,
D.
Terada
, and
A.
Morita
, “
Hydrogen-bonding structure at zwitterionic lipid/water interface
,”
J. Phys. Chem. Lett.
7
,
216
(
2016
).
49.
T.
Ishiyama
and
A.
Morita
, “
Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. I. Flexible and polarizable molecular modeling and interfacial properties
,”
J. Phys. Chem. C
111
,
721
(
2007
).
50.
P. K.
Mankoo
and
T.
Keyes
, “
POLIR: Polarizable, flexible, transferable water potential optimized for IR spectroscopy
,”
J. Chem. Phys.
129
,
034504
(
2008
).
51.
M.
Heyden
,
J.
Sun
,
S.
Funkner
,
G.
Mathias
,
H.
Forbert
,
M.
Havenith
, and
D.
Marx
, “
Dissecting the THz spectrum of liquid water from first principles via correlations in time and space
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
12068
(
2010
).
52.
T.
Ishiyama
and
A.
Morita
, “
Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model
,”
J. Chem. Phys.
131
,
244714
(
2009
).
53.
T.
Ohto
,
M.
Dodia
,
J.
Xu
,
S.
Imoto
,
F.
Tang
,
F.
Zysk
,
T.
Kühne
,
Y.
Shigeta
,
M.
Bonn
,
X.
Wu
 et al., “
Accessing the accuracy of density functional theory through structure and dynamics of the water–air interface
,”
J. Phys. Chem. Lett.
10
,
4914
(
2019
).
54.
M.
Galib
,
T.
Duignan
,
Y.
Misteli
,
M.
Baer
,
G.
Schenter
,
J.
Hutter
, and
C.
Mundy
, “
Mass density fluctuations in quantum and classical descriptions of liquid water
,”
J. Chem. Phys.
146
,
244501
(
2017
).
55.
O.
Marsalek
and
T.
Markland
, “
Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects
,”
J. Phys. Chem. Lett.
8
,
1545
(
2017
).
56.
M.
Riera
,
E.
Lambros
,
T.
Nguyen
,
A.
Götz
, and
F.
Paesani
, “
Low-order many-body interactions determine the local structure of liquid water
,”
Chem. Sci.
10
,
8211
(
2019
).
57.
Z.
Yang
,
M.
Pederson
, and
J.
Perdew
, “
Full self-consistency in the fermi-orbital self-interaction correction
,”
Phys. Rev. A
95
,
052505
(
2017
).
58.
C.
Li
,
X.
Zheng
,
A.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
, “
Local scaling correction for reducing delocalization error in density functional approximations
,”
Phys. Rev. Lett.
114
,
053001
(
2015
).
59.
D.
Moberg
,
S.
Straight
, and
F.
Paesani
, “
Temperature dependence of the air/water interface revealed by polarization sensitive sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
122
,
4356
(
2018
).
60.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
(
2014
).

Supplementary Material

You do not currently have access to this content.