Bottom-up coarse-graining of polymers is commonly performed by matching structural order parameters such as distribution of bond lengths, bending and dihedral angles, and pair distribution functions. In this study, we introduce the distribution of nearest-neighbors as an additional order parameter in the concept of local density potentials. We describe how the inverse-Monte Carlo method provides a framework for forcefield development that is capable of overcoming challenges associated with the parameterization of interaction terms in polymer systems. The technique is applied on polyisoprene melts as a prototype system. We demonstrate that while different forcefields can be developed that perform equally in terms of matching target distributions, the inclusion of nearest-neighbors provides a straightforward route to match both thermodynamic and conformational properties. We find that several temperature state points can also be addressed, provided that the forcefield is refined accordingly. Finally, we examine both the single-particle and the collective dynamics of the coarse-grain models, demonstrating that all forcefields present a similar acceleration relative to the atomistic systems.

1.
K.
Binder
,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
(
Oxford University Press
,
1995
).
3.
Y. N.
Pandey
,
G. J.
Papakonstantopoulos
, and
M.
Doxastakis
,
Macromolecules
46
,
5097
(
2013
).
4.
K.
Johnston
and
V.
Harmandaris
,
Soft Matter
9
,
6696
(
2013
).
5.
R.
Potestio
,
C.
Peter
, and
K.
Kremer
,
Entropy
16
,
4199
(
2014
).
6.
N. J. H.
Dunn
,
T. T.
Foley
, and
W. G.
Noid
,
Acc. Chem. Res.
49
,
2832
(
2016
).
7.
E.
Kalligiannaki
,
A.
Chazirakis
,
A.
Tsourtis
,
M.
Katsoulakis
,
P.
Plecháč
, and
V.
Harmandaris
,
Eur. Phys. J. Spec. Top.
225
,
1347
(
2016
).
8.
M.
Dinpajooh
and
M. G.
Guenza
,
J. Phys. Chem. B
122
,
3426
(
2018
).
9.
W.
Schommers
,
Phys. Rev. A
28
,
3599
(
1983
).
11.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
13.
Q.
Sun
and
R.
Faller
,
J. Chem. Theory Comput.
2
,
607
(
2006
).
14.
Q.
Sun
and
R.
Faller
,
J. Chem. Phys.
126
,
144908
(
2007
).
15.
Y. N.
Pandey
,
A.
Brayton
,
C.
Burkhart
,
G. J.
Papakonstantopoulos
, and
M.
Doxastakis
,
J. Chem. Phys.
140
,
054908
(
2014
).
16.
T.
Spyriouni
,
C.
Tzoumanekas
,
D.
Theodorou
,
F.
Müller-Plathe
, and
G.
Milano
,
Macromolecules
40
,
3876
(
2007
).
17.
V.
Harmandaris
,
N.
Adhikari
,
N.
van der Vegt
, and
K.
Kremer
,
Macromolecules
39
,
6708
(
2006
).
18.
G. G.
Zhang
,
A.
Chazirakis
,
V.
Harmandaris
,
T.
Stuehn
,
K.
Daoulas
, and
K.
Kremer
,
Soft Matter
15
,
289
(
2019
).
19.
H.
Wang
,
C.
Junghans
, and
K.
Kremer
,
Eur. Phys. J. E
28
,
221
(
2009
).
20.
M.
Guenza
,
Eur. Phys. J. Spec. Top.
224
,
2177
(
2015
).
21.
M.
Dinpajooh
and
M. G.
Guenza
,
Soft Matter
14
,
7126
(
2018
).
22.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
123
,
134105
(
2005
).
23.
T.
Murtola
,
E.
Falck
,
M.
Karttunen
, and
I.
Vattulainen
,
J. Chem. Phys.
126
,
075101
(
2007
).
24.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
133
,
064109
(
2010
).
25.
G.
Maurel
,
B.
Schnell
,
F.
Goujon
,
M.
Couty
, and
P.
Malfreyt
,
J. Chem. Theory Comput.
8
,
4570
(
2012
).
26.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
132
,
164106
(
2010
).
27.
C.-C.
Fu
,
P. M.
Kulkarni
,
M.
Scott Shell
, and
L.
Gary Leal
,
J. Chem. Phys.
137
,
164106
(
2012
).
28.
T.
Ohkuma
and
K.
Kremer
,
Polymer
130
,
88
(
2017
).
29.
J. E.
Mark
,
J. Am. Chem. Soc.
88
,
4354
(
1966
).
30.
M.
Doxastakis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
J. Chem. Phys.
115
,
11339
(
2001
).
31.
N. J. H.
Dunn
and
W. G.
Noid
,
J. Chem. Phys.
143
,
243148
(
2015
).
32.
D.
Rosenberger
and
N. F. A.
van der Vegt
,
Phys. Chem. Chem. Phys.
20
,
6617
(
2018
).
33.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. Lett.
50
,
1285
(
1983
).
34.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
35.
I.
Pagonabarraga
and
D.
Frenkel
,
Mol. Simul.
25
,
167
(
2000
).
36.
S.
Merabia
and
I.
Pagonabarraga
,
J. Chem. Phys.
127
,
054903
(
2007
).
37.
E. C.
Allen
and
G. C.
Rutledge
,
J. Chem. Phys.
128
,
154115
(
2008
).
38.
E. C.
Allen
and
G. C.
Rutledge
,
J. Chem. Phys.
130
,
034904
(
2009
).
39.
S.
Izvekov
,
P. W.
Chung
, and
B. M.
Rice
,
J. Chem. Phys.
135
,
044112
(
2011
).
40.
G.
Faure
,
J.-B.
Maillet
, and
G.
Stoltz
,
J. Chem. Phys.
140
,
114105
(
2014
).
41.
T.
Sanyal
and
M. S.
Shell
,
J. Chem. Phys.
145
,
034109
(
2016
).
42.
J. D.
Moore
,
B. C.
Barnes
,
S.
Izvekov
,
M.
Lísal
,
M. S.
Sellers
,
D. E.
Taylor
, and
J. K.
Brennan
,
J. Chem. Phys.
144
,
104501
(
2016
).
43.
V.
Agrawal
,
G.
Arya
, and
J.
Oswald
,
Macromolecules
47
,
3378
(
2014
).
44.
J. W.
Wagner
,
T.
Dannenhoffer-Lafage
,
J.
Jin
, and
G. A.
Voth
,
J. Chem. Phys.
147
,
044113
(
2017
).
45.
J. P.
Larentzos
,
J. M.
Mansell
,
M.
Lísal
, and
J. K.
Brennan
,
Mol. Phys.
116
,
3271
(
2018
).
46.
T.
Sanyal
and
M. S.
Shell
,
J. Phys. Chem. B
122
,
5678
(
2018
).
47.
D.
Rosenberger
,
T.
Sanyal
,
M. S.
Shell
, and
N. F.
van der Vegt
,
J. Chem. Theory Comput.
15
,
2881
(
2019
).
48.
V.
Agrawal
,
P.
Peralta
,
Y.
Li
, and
J.
Oswald
,
J. Chem. Phys.
145
,
104903
(
2016
).
49.
A.
Tsourtis
,
V.
Harmandaris
, and
D.
Tsagkarogiannis
,
Entropy
19
,
395
(
2017
).
50.
M.
Doxastakis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
J. Chem. Phys.
115
,
11352
(
2001
).
51.
V. A.
Harmandaris
,
M.
Doxastakis
,
V. G.
Mavrantzas
, and
D. N.
Theodorou
,
J. Chem. Phys.
116
,
436
(
2002
).
52.
M.
Doxastakis
,
D. N.
Theodorou
,
G.
Fytas
,
F.
Kremer
,
R.
Faller
,
F.
Müller-Plathe
, and
N.
Hadjichristidis
,
J. Chem. Phys.
119
,
6883
(
2003
).
53.
P.
Sharma
,
S.
Roy
, and
H. A.
Karimi-Varzaneh
,
J. Phys. Chem. B
120
,
1367
(
2016
).
54.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1
,
19
(
2015
).
55.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
56.
S.
Nosé
and
M.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
58.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
59.
W.
Graessley
and
S.
Edwards
,
Polymer
22
,
1329
(
1981
).
60.
R. A.
Orwoll
, “
Densities, coefficients of thermal expansion, and compressibilities of amorphous polymers
,” in
Physical Properties of Polymers Handbook
, edited by
J. E.
Mark
(
Springer New York
,
New York, NY
,
2007
), pp.
93
101
.
61.
Y.
Yi
and
P.
Zoller
,
J. Polym. Sci., Part B: Polym. Phys.
31
,
779
(
1993
).
62.
M. S.
Uddin
and
J.
Ju
,
Polymer
101
,
34
(
2016
).
63.
L. B.
Lucy
,
Astron. J.
82
,
1013
(
1977
).
64.
R. A.
Gingold
and
J. J.
Monaghan
,
Mon. Not. R. Astron. Soc.
181
,
375
(
1977
).
65.
P.
Espanol
and
M.
Revenga
,
Phys. Rev. E
67
,
026705
(
2003
).
66.
A.
Okabe
,
B.
Boots
,
K.
Sugihara
, and
S. N.
Chiu
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
(
John Wiley & Sons
,
2009
), Vol. 501.
67.
D. E.
Knuth
,
Art of Computer Programming
, Seminumerical algorithms Vol. 2 (
Addison-Wesley Professional
,
2014
).
68.
P. W.
Jones
,
A.
Osipov
, and
V.
Rokhlin
,
Proc. Natl. Acad. Sci. U. S. A
108
,
15679
(
2011
).
69.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
,
J. Chem. Phys.
136
,
234107
(
2012
).
70.
S.
Trofimov
,
E.
Nies
, and
M.
Michels
,
J. Chem. Phys.
117
,
9383
(
2002
).
71.
P. B.
Warren
,
Phys. Rev. E
68
,
066702
(
2003
).
72.
P. B.
Warren
,
Phys. Rev. E
87
,
045303
(
2013
).
73.
A. P.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
(
1995
).
74.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
On the reduction of molecular degrees of freedom in computer simulations
,” in
Novel Methods in Soft Matter Simulations
, edited by
M.
Karttunen
,
A.
Lukkarinen
, and
I.
Vattulainen
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2004
), pp.
219
244
.
75.
A.
Savelyev
and
G. A.
Papoian
,
Biophys. J.
96
,
4044
(
2009
).
76.
I.
Pagonabarraga
and
D.
Frenkel
,
J. Chem. Phys.
115
,
5015
(
2001
).
77.
Y. N.
Pandey
and
M.
Doxastakis
,
J. Chem. Phys.
136
,
094901
(
2012
).
78.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation from Algorithms to Applications
(
Academic Press
,
California
,
2002
).
79.
A.
Lyubartsev
,
A.
Mirzoev
,
L.
Chen
, and
A.
Laaksonen
,
Faraday Discuss.
144
,
43
(
2010
).
80.
D.
Rosenberger
,
M.
Hanke
, and
N. F.
van der Vegt
,
Eur. Phys. J. Spec. Top.
225
,
1323
(
2016
).
81.
M. R.
DeLyser
and
W. G.
Noid
,
J. Chem. Phys.
147
,
134111
(
2017
).
82.
T. C.
Moore
,
C. R.
Iacovella
, and
C.
McCabe
,
J. Chem. Phys.
140
,
224104
(
2014
).
83.
T. C.
Moore
,
C. R.
Iacovella
,
R.
Hartkamp
,
A. L.
Bunge
, and
C.
McCabe
,
J. Phys. Chem. B
120
,
9944
(
2016
).
84.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1987
).
85.
V.
Harmandaris
and
K.
Kremer
,
Macromolecules
42
,
791
(
2009
).
86.
V.
Harmandaris
and
K.
Kremer
,
Soft Matter
5
,
3920
(
2009
).
87.
V.
Harmandaris
,
N.
Adhikari
,
N.
van der Vegt
,
K.
Kremer
,
B.
Mann
,
R.
Voelkel
,
C.
Liew
, and
H.
Weiss
,
Macromolecules
40
,
7026
(
2007
).
88.
N. E.
Moe
and
M.
Ediger
,
Phys. Rev. E
59
,
623
(
1999
).
89.
J.
Salacuse
,
A.
Denton
, and
P.
Egelstaff
,
Phys. Rev. E
53
,
2382
(
1996
).
90.
V.
Harmandaris
,
V.
Mavrantzas
,
D.
Theodorou
,
M.
Kröger
,
J.
Ramirez
,
H. C.
Öttinger
, and
D.
Vlassopoulos
,
Macromolecules
36
,
1376
(
2003
).
91.
M.
Doxastakis
,
K.
Chrissopoulou
,
A.
Aouadi
,
B.
Frick
,
T. P.
Lodge
, and
G.
Fytas
,
J. Chem. Phys.
116
,
4707
(
2002
).
92.
V.
Harmandaris
and
M.
Doxastakis
,
J. Chem. Phys.
139
,
034904
(
2013
).
You do not currently have access to this content.