Aqueous electrolytes have the potential to overcome some of the safety issues associated with current Li-ion batteries intended for large-scale applications such as stationary use. We recently discovered a lithium-salt dihydrate melt, viz., Li(TFSI)0.7(BETI)0.3·2H2O, which can provide a wide potential window of over 3 V; however, its reductive stability strongly depends on the electrode material. To understand the underlying mechanism, the interfacial structures on several electrodes (C, Al, and Pt) were investigated by conducting molecular dynamics simulation under the constraint of the electrode potential. The results showed that the high adsorption force on the surface of the metal electrodes is responsible for the increased water density, thus degrading the reductive stability of the electrolyte. Notably, the anion orientation on Pt at a low potential is unfavorable for the formation of a stable anion-derived solid electrolyte interphase, thus promoting hydrogen evolution. Hence, the interfacial structures that depend on the material and potential of the electrode mainly determine the reductive stability of hydrate-melt electrolytes.

1.
W.
Li
,
J. R.
Dahn
, and
D. S.
Wainwright
,
Science
264
,
1115
(
1994
).
2.
A.
Eftekhari
,
Adv. Energy Mater.
8
,
1801156
(
2018
).
3.
L.
Suo
,
O.
Borodin
,
T.
Gao
,
M.
Olguin
,
J.
Ho
,
X.
Fan
,
C.
Luo
,
C.
Wang
, and
K.
Xu
,
Science
350
,
938
(
2015
).
4.
Y.
Yamada
,
K.
Usui
,
K.
Sodeyama
,
S.
Ko
,
Y.
Tateyama
, and
A.
Yamada
,
Nat. Energy
1
,
16129
(
2016
).
5.
L.
Suo
,
O.
Borodin
,
W.
Sun
,
X.
Fan
,
C.
Yang
,
F.
Wang
,
T.
Gao
,
Z.
Ma
,
M.
Schroeder
,
A.
von Cresce
,
S. M.
Russell
,
M.
Armand
,
A.
Angell
,
K.
Xu
, and
C.
Wang
,
Angew. Chem., Int. Ed.
55
,
7136
(
2016
).
6.
N.
Dubouis
,
P.
Lemaire
,
B.
Mirvaux
,
E.
Salager
,
M.
Deschamps
, and
A.
Grimaud
,
Energy Environ. Sci.
11
,
3491
(
2018
).
7.
Q.
Zheng
,
S.
Miura
,
K.
Miyazaki
,
S.
Ko
,
E.
Watanabe
,
M.
Okoshi
,
C.-P.
Chou
,
Y.
Nishimura
,
H.
Nakai
,
T.
Kamiya
,
T.
Honda
,
J.
Akikusa
,
Y.
Yamada
, and
A.
Yamada
,
Angew. Chem., Int. Ed.
58
,
14202
(
2019
).
8.
S.
Ko
,
Y.
Yamada
,
K.
Miyazaki
,
T.
Shimada
,
E.
Watanabe
,
Y.
Tateyama
,
T.
Kamiya
,
T.
Honda
,
J.
Akikusa
, and
A.
Yamada
,
Electrochem. Commun.
104
,
106488
(
2019
).
9.
S.
Ko
,
Y.
Yamada
, and
A.
Yamada
,
ACS Appl. Mater. Interfaces
11
,
45554
(
2019
).
10.
K.
Miyazaki
,
N.
Takenaka
,
E.
Watanabe
,
S.
Iizuka
,
Y.
Yamada
,
Y.
Tateyama
, and
A.
Yamada
,
J. Phys. Chem. Lett.
10
,
6301
(
2019
).
11.
Y.
Yamada
,
K.
Furukawa
,
K.
Sodeyama
,
K.
Kikuchi
,
M.
Yaegashi
,
Y.
Tateyama
, and
A.
Yamada
,
J. Am. Chem. Soc.
136
,
5039
(
2014
).
12.
K.
Sodeyama
,
Y.
Yamada
,
K.
Aikawa
,
A.
Yamada
, and
Y.
Tateyama
,
J. Phys. Chem. C
118
,
14091
(
2014
).
13.
T.
Inagaki
and
M.
Nagaoka
,
J. Comput. Chem.
40
,
2131
(
2019
).
14.
J. K.
Grepstad
,
P. O.
Gartland
, and
B. J.
Slagsvold
,
Surf. Sci.
57
,
348
(
1976
).
15.
G. N.
Derry
and
Z.
Ji-Zhong
,
Phys. Rev. B
39
,
1940
(
1989
).
16.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
17.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
18.
S. Y.
Liem
and
K.-Y.
Chan
,
Mol. Phys.
86
,
939
(
1995
).
19.
S.
Duan
,
X.
Xu
,
Z.-Q.
Tian
, and
Y.
Luo
,
Phys. Rev. B
86
,
045450
(
2012
).
20.
C.
Li
and
T.-W.
Chou
,
Int. J. Solids Struct.
40
,
2487
(
2003
).
22.
J.
Vatamanu
and
O.
Borodin
,
J. Phys. Chem. Lett.
8
,
4362
(
2017
).
23.
D. A.
Case
,
T. A.
Darden
,
T. E.
Cheatham
 III
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
K. M.
Merz
,
D. A.
Pearlman
,
M.
Crowley
 et al, AMBER 9,
University of California
,
San Francisco
,
2006
.

Supplementary Material

You do not currently have access to this content.