We have studied the mechanism of coherent acoustic phonon generation in gold nanofilm induced by ultrafast laser-heating. Under the non-equilibrium condition when the lattice heating time is much longer than the film vibration period, we clearly identified the contribution of electronic thermal stress to drive the lattice motion and successfully measured the electronic Grüneisen parameter γe to be 1.6 ± 0.3. We also found that lattice heating via the electron–phonon coupling process lagged behind the coherent lattice motion, which we attributed to the prolonged thermalization process of the laser-excited non-thermal electrons under high pumping conditions. By taking such a process into account, the improved model fit our experimental data much better, and the extracted γe of gold was still around 1.6.

1.
P.
Ruello
and
V.
Gusev
, “
Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action
,”
Ultrasonics
56
,
21
35
(
2015
).
2.
W. S.
Fann
,
R.
Storz
,
H. W. K.
Tom
, and
J.
Bokor
, “
Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films
,”
Phys. Rev. Lett.
68
(
18
),
2834
2837
(
1992
).
3.
R. H. M.
Groeneveld
,
R.
Sprik
, and
Ad.
Lagendijk
, “
Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au
,”
Phys. Rev. B
51
(
17
),
11433
11445
(
1995
).
4.
N.
Del Fatti
,
C.
Voisin
,
M.
Achermann
,
S.
Tzortzakis
,
D.
Christofilos
, and
F.
Vallée
, “
Nonequilibrium electron dynamics in noble metals
,”
Phys. Rev. B
61
(
24
),
16956
16966
(
2000
).
5.
J.
Hohlfeld
,
S. S.
Wellershoff
,
J.
Gudde
,
U.
Conrad
,
V.
Jahnke
, and
E.
Matthias
, “
Electron and lattice dynamics following optical excitation of metals
,”
Chem. Phys.
251
,
237
258
(
2000
).
6.
G.
Tas
and
H. J.
Maris
, “
Electron diffusion in metals studied by picosecond ultrasonics
,”
Phys. Rev. B
49
(
21
),
15046
15054
(
1994
).
7.
M.
Perner
,
S.
Gresillon
,
J.
März
,
G.
von Plessen
,
J.
Feldmann
,
J.
Porstendorfer
,
K.-J.
Berg
, and
G.
Berg
, “
Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles
,”
Phys. Rev. Lett.
85
(
4
),
792
795
(
2000
).
8.
J.
Wang
and
C.
Guo
, “
Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals
,”
Phys. Rev. B
75
(
18
),
184304
(
2007
).
9.
O. B.
Wright
, “
Ultrafast nonequilibrium stress generation in gold and silver
,”
Phys. Rev. B
49
(
14
),
9985
9988
(
1994
).
10.
X.
Wang
,
S.
Nie
,
J.
Li
,
R.
Clinite
,
M.
Wartenbe
,
M.
Martin
,
W.
Liang
, and
J.
Cao
, “
Electronic gruneisen parameter and thermal expansion in ferromagnetic transition metal
,”
Appl. Phys. Lett.
92
(
12
),
121918
(
2008
).
11.
S.
Nie
,
X.
Wang
,
H.
Park
,
R.
Clinite
, and
J.
Cao
, “
Measurement of the electronic gr[u-umlaut]neisen constant using femtosecond electron diffraction
,”
Phys. Rev. Lett.
96
(
2
),
025901
(
2006
).
12.
M.
Nicoul
,
U.
Shymanovich
,
A.
Tarasevitch
,
D.
von der Linde
, and
K.
Sokolowski-Tinten
, “
Picosecond acoustic response of a laser-heated gold-film studied with time-resolved x-ray diffraction
,”
Appl. Phys. Lett.
98
,
191902
(
2011
).
13.
J. G.
Collins
,
G. K.
White
, and
C. A.
Swenson
, “
The thermal expansion of aluminum below 35 K
,”
J. Low Temp. Phys.
10
,
69
77
(
1973
).
14.
T. H. K.
Barron
,
J. G.
Collins
, and
G. K.
White
, “
Thermal expansion of solids at low temperatures
,”
Adv. Phys.
29
,
609
730
(
1980
).
15.
H.
Park
,
X.
Wang
,
S.
Nie
,
R.
Clinite
, and
J.
Cao
, “
Mechanism of coherent acoustic phonon generation under nonequilibrium conditions
,”
Phys. Rev. B
72
(
10
),
100301
(
2005
).
16.
K. O.
Mclean
,
C. A.
Swenson
, and
C. R.
Case
, “
Thermal expansion of copper, silver, and gold below 30 K
,”
J. Low Temp. Phys.
7
,
77
98
(
1972
).
17.
X.
Wang
,
H.
Park
,
S.
Nie
, and
J.
Cao
, “
Femtosecond electron diffraction: Probe and control of ultrafast structural dynamics
,”
Microsc. Microanal.
11
,
478
(
2005
).
18.
X.
Wang
and
Y.
Li
, “
Ultrafast electron diffraction
,”
Chin. Phys. B
27
(
7
),
076102
(
2018
).
19.
D. B.
Sirdeshmukh
,
L.
Sirdeshmukh
, and
K. G.
Subhadra
,
Micro- and Macro-Properties of Solids
(
Springer
,
2006
).
20.
P. B.
Allen
, “
Theory of thermal relaxation of electrons in metals
,”
Phys. Rev. Lett.
59
(
13
),
1460
1463
(
1987
).
21.
L.
Waldecker
,
R.
Bertoni
,
R.
Ernstorfer
, and
J.
Vorberger
, “
Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation
,”
Phys. Rev. X
6
(
2
),
021003
(
2016
).
22.
M.
Ligges
,
I.
Rajkovic
,
P.
Zhou
,
O.
Posth
,
C.
Hassel
,
G.
Dumpich
, and
D.
Von Der Linde
, “
Observation of ultrafast lattice heating using time resolved electron diffraction
,”
Appl. Phys. Lett.
94
(
10
),
101910
(
2009
).
23.
J.
Li
,
R.
Clinite
,
X.
Wang
, and
J.
Cao
, “
Simulation of ultrafast heating induced structural dynamics using a one-dimensional spring model
,”
Phys. Rev. B
80
,
014304
(
2009
).
24.
S. D.
Brorson
,
J. G.
Fujimoto
, and
E. P.
Ippen
, “
Femtosecond electronic heat-transport dynamics in thin gold films
,”
Phys. Rev. Lett.
59
(
17
),
1962
1965
(
1987
).
25.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, “
Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium
,”
Phys. Rev. B
77
(
7
),
075133
(
2008
).
26.
Y.
Takahashi
and
H.
Akiyama
, “
Heat capacity of gold from 80 to 1000 K
,”
Thermochim. Acta
109
(
1
),
105
109
(
1986
).
27.
G.
Cordoba
and
C. R.
Brooks
, “
The heat capacity of gold from 300 to 1200 K: Experimental data and analysis of contributions
,”
Phys. Status Solidi A
6
(
2
),
581
595
(
1971
).
28.
D. R.
Lide
,
CRC Handbook Chemistry and Physics
, 82nd ed. (
Chemical Rubber Company
,
Roca Raton
,
2001–2002
).
You do not currently have access to this content.