We report the implementation of a cost-effective approximation method within the framework of the time-dependent optimized coupled-cluster (TD-OCC) method [T. Sato et al., J. Chem. Phys. 148, 051101 (2018)] for real-time simulations of intense laser-driven multielectron dynamics. The method, designated as TD-OCEPA0, is a time-dependent extension of the simplest version of the coupled-electron pair approximation with optimized orbitals [U. Bozkaya and C. D. Sherrill, J. Chem. Phys. 139, 054104 (2013)]. It is size extensive, gauge invariant, and computationally much more efficient than the TD-OCC method with double excitations. We employed this method to simulate the electron dynamics in Ne and Ar atoms exposed to intense near infrared laser pulses with various intensities. The computed results, including high-harmonic generation spectra and ionization yields, are compared with those of various other methods ranging from uncorrelated time-dependent Hartree–Fock to fully correlated (within the active orbital space) time-dependent complete-active-space self-consistent field (TD-CASSCF). The TD-OCEPA0 results show good agreement with TD-CASSCF ones for moderate laser intensities. For higher intensities, however, TD-OCEPA0 tends to overestimate the correlation effect, as occasionally observed for CEPA0 in the ground-state correlation energy calculations.

1.
M.
Schultze
 et al.,
Science
328
,
1658
(
2010
).
2.
K.
Klünder
 et al.,
Phys. Rev. Lett.
106
,
143002
(
2011
).
3.
L.
Belshaw
 et al.,
J. Phys. Chem. Lett.
3
,
3751
(
2012
).
4.
F.
Calegari
 et al.,
Science
346
,
336
(
2014
).
5.
J.
Itatani
 et al.,
Nature
432
,
867
(
2004
).
6.
O.
Smirnova
 et al.,
Nature
460
,
972
(
2009
).
7.
S.
Haessler
 et al.,
Nat. Phys.
6
,
200
(
2010
).
8.
M.
Protopapas
,
C. H.
Keitel
, and
P. L.
Knight
,
Rep. Prog. Phys.
60
,
389
(
1997
).
9.
F.
Krausz
and
M.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
10.
P.
Agostini
and
L. F.
DiMauro
,
Rep. Prog. Phys.
67
,
813
(
2004
).
11.
L.
Gallmann
,
C.
Cirelli
, and
U.
Keller
,
Annu. Rev. Phys. Chem.
63
,
447
(
2012
).
12.
Z.
Chang
,
Fundamentals of Attosecond Optics
(
CRC Press
,
2016
).
13.
K.
Zhao
 et al.,
Opt. Lett.
37
,
3891
(
2012
).
14.
E. J.
Takahashi
,
P.
Lan
,
O. D.
Mücke
,
Y.
Nabekawa
, and
K.
Midorikawa
,
Nat. Commun.
4
,
2691
(
2013
).
15.
T.
Popmintchev
 et al.,
science
336
,
1287
(
2012
).
16.
P. M.
Kraus
 et al.,
Science
350
,
790
(
2015
).
17.
K. L.
Ishikawa
, “
High-harmonic generation
,” in
Advances in Solid State Lasers Development and Applications
(
InTech
,
2010
).
18.
K. L.
Ishikawa
and
T.
Sato
,
IEEE J. Sel. Top. Quantum Electron.
21
,
1
(
2015
).
19.
J. S.
Parker
,
E. S.
Smyth
, and
K. T.
Taylor
,
J. Phys. B: At., Mol. Opt. Phys.
31
,
L571
(
1998
).
20.
J. S.
Parker
 et al.,
J. Phys. B: At., Mol. Opt. Phys.
33
,
L239
(
2000
).
21.
M. S.
Pindzola
and
F.
Robicheaux
,
Phys. Rev. A
57
,
318
(
1998
).
22.
S.
Laulan
and
H.
Bachau
,
Phys. Rev. A
68
,
013409
(
2003
).
23.
K. L.
Ishikawa
and
K.
Midorikawa
,
Phys. Rev. A
72
,
013407
(
2005
).
24.
J.
Feist
 et al.,
Phys. Rev. Lett.
103
,
063002
(
2009
).
25.
K. L.
Ishikawa
and
K.
Ueda
,
Phys. Rev. Lett.
108
,
033003
(
2012
).
26.
S.
Sukiasyan
,
K. L.
Ishikawa
, and
M.
Ivanov
,
Phys. Rev. A
86
,
033423
(
2012
).
27.
W.
Vanroose
,
D. A.
Horner
,
F.
Martin
,
T. N.
Rescigno
, and
C. W.
McCurdy
,
Phys. Rev. A
74
,
052702
(
2006
).
28.
D. A.
Horner
 et al.,
Phys. Rev. Lett.
101
,
183002
(
2008
).
29.
J. L.
Krause
,
K. J.
Schafer
, and
K. C.
Kulander
,
Phys. Rev. Lett.
68
,
3535
(
1992
).
30.
K. C.
Kulander
,
Phys. Rev. A
36
,
2726
(
1987
).
31.
J.
Caillat
 et al.,
Phys. Rev. A
71
,
012712
(
2005
).
32.
T.
Kato
and
H.
Kono
,
Chem. Phys. Lett.
392
,
533
(
2004
).
33.
M.
Nest
,
T.
Klamroth
, and
P.
Saalfrank
,
J. Chem. Phys.
122
,
124102
(
2005
).
34.
D. J.
Haxton
,
K. V.
Lawler
, and
C. W.
McCurdy
,
Phys. Rev. A
83
,
063416
(
2011
).
35.
D.
Hochstuhl
and
M.
Bonitz
,
J. Chem. Phys.
134
,
084106
(
2011
).
36.
T.
Sato
and
K. L.
Ishikawa
,
Phys. Rev. A
88
,
023402
(
2013
).
37.
T.
Sato
 et al.,
Phys. Rev. A
94
,
023405
(
2016
).
38.
I.
Tikhomirov
,
T.
Sato
, and
K. L.
Ishikawa
,
Phys. Rev. Lett.
118
,
203202
(
2017
).
39.
H.
Miyagi
and
L. B.
Madsen
,
Phys. Rev. A
87
,
062511
(
2013
).
40.
H.
Miyagi
and
L. B.
Madsen
,
Phys. Rev. A
89
,
063416
(
2014
).
41.
D. J.
Haxton
and
C. W.
McCurdy
,
Phys. Rev. A
91
,
012509
(
2015
).
42.
T.
Sato
and
K. L.
Ishikawa
,
Phys. Rev. A
91
,
023417
(
2015
).
43.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
44.
H. G.
Kümmel
,
Int. J. Mod. Phys. B
17
,
5311
(
2003
).
45.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2007
).
46.
K.
Schönhammer
and
O.
Gunnarsson
,
Phys. Rev. B
18
,
6606
(
1978
).
47.
P.
Hoodbhoy
and
J. W.
Negele
,
Phys. Rev. C
18
,
2380
(
1978
).
48.
P.
Hoodbhoy
and
J. W.
Negele
,
Phys. Rev. C
19
,
1971
(
1979
).
49.
E.
Dalgaard
and
H. J.
Monkhorst
,
Phys. Rev. A
28
,
1217
(
1983
).
50.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
51.
M.
Takahashi
and
J.
Paldus
,
J. Chem. Phys.
85
,
1486
(
1986
).
52.
M. D.
Prasad
,
J. Chem. Phys.
88
,
7005
(
1988
).
53.
K. L.
Sebastian
,
Phys. Rev. B
31
,
6976
(
1985
).
54.
D. A.
Pigg
,
G.
Hagen
,
H.
Nam
, and
T.
Papenbrock
,
Phys. Rev. C
86
,
014308
(
2012
).
55.
D. R.
Nascimento
and
A. E.
DePrince
 III
,
J. Chem. Theory Comput.
12
,
5834
(
2016
).
56.
Y. C.
Park
,
A.
Perera
, and
R. J.
Bartlett
,
J. Chem. Phys.
151
,
164117
(
2019
).
57.
C.
Huber
and
T.
Klamroth
,
J. Chem. Phys.
134
,
054113
(
2011
).
58.
S.
Kvaal
,
J. Chem. Phys.
136
,
194109
(
2012
).
60.
T.
Sato
,
H.
Pathak
,
Y.
Orimo
, and
K. L.
Ishikawa
,
J. Chem. Phys.
148
,
051101
(
2018
).
61.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
62.
G. E.
Scuseria
and
H. F.
Schaefer
 III
,
Chem. Phys. Lett.
142
,
354
(
1987
).
63.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
64.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
65.
G. D.
Lindh
,
T. J.
Mach
, and
T. D.
Crawford
,
Chem. Phys.
401
,
125
(
2012
).
66.
R. H.
Myhre
,
J. Chem. Phys.
148
,
094110
(
2018
).
67.
T. B.
Pedersen
and
S.
Kvaal
,
J. Chem. Phys.
150
,
144106
(
2019
).
68.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
69.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
70.
W.
Meyer
,
Int. J. Quantum Chem.
5
,
341
(
1971
).
71.
W.
Meyer
, in ,
Modern Theoretical Chemistry
(
Plenum
,
1977
), Vol. 3, pp.
413
446
.
72.
H.-J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
73.
R.
Ahlrichs
,
P.
Scharf
, and
C.
Ehrhardt
,
J. Chem. Phys.
82
,
890
(
1985
).
74.
P.
Pulay
and
S.
Sæbø
,
Chem. Phys. Lett.
117
,
37
(
1985
).
75.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
76.
S.
Koch
and
W.
Kutzelnigg
,
Theor. Chim. Acta
59
,
387
(
1980
).
77.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
78.
F.
Wennmohs
and
F.
Neese
,
Chem. Phys.
343
,
217
(
2008
).
79.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
80.
C.
Kollmar
and
F.
Neese
,
Mol. Phys.
108
,
2449
(
2010
).
81.
J.-P.
Malrieu
,
H.
Zhang
, and
J.
Ma
,
Chem. Phys. Lett.
493
,
179
(
2010
).
82.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
139
,
054104
(
2013
).
83.
J. M.
Turney
 et al.,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
556
(
2012
).
84.
J. D.
Dill
and
J. A.
Pople
,
J. Chem. Phys.
62
,
2921
(
1975
).
85.
M.
Frisch
 et al., Gaussian 09, Revision D. 01,
2009
.
86.
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
87.
R. J.
Bartlett
and
I.
Shavitt
,
Chem. Phys. Lett.
50
,
190
(
1977
).
88.
R. J.
Bartlett
,
I.
Shavitt
, and
G. D.
Purvis
 III
,
J. Chem. Phys.
71
,
281
(
1979
).
89.
R. J.
Bartlett
and
J.
Noga
,
Chem. Phys. Lett.
150
,
29
(
1988
).
90.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
91.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
130
,
144112
(
2009
).
92.
D.
Mukherjee
,
Chem. Phys. Lett.
79
,
559
(
1981
).
93.
Y.
Orimo
,
T.
Sato
,
A.
Scrinzi
, and
K. L.
Ishikawa
,
Phys. Rev. A
97
,
023423
(
2018
).
94.
M.
Hochbruck
and
A.
Ostermann
,
Acta Numer.
19
,
209
(
2010
).
95.
F.
Lackner
,
I.
Březinová
,
T.
Sato
,
K. L.
Ishikawa
, and
J.
Burgdörfer
,
Phys. Rev. A
91
,
023412
(
2015
).
96.
T.
Sato
,
Y.
Orimo
,
T.
Teramura
,
O.
Tugs
, and
K. L.
Ishikawa
, “
Time-dependent complete-active-space self-consistent-field method for ultrafast intense laser science
,” in
Progress in Ultrafast Intense Laser Science XIV
(
Springer
,
2018
), p.
143
.
97.
H. J.
Wörner
,
H.
Niikura
,
J. B.
Bertrand
,
P.
Corkum
, and
D.
Villeneuve
,
Phys. Rev. Lett.
102
,
103901
(
2009
).
You do not currently have access to this content.