We present the open-source VOTCA-XTP software for the calculation of the excited-state electronic structure of molecules using many-body Green’s function theory in the GW approximation with the Bethe–Salpeter equation (BSE). This work provides a summary of the underlying theory and discusses the details of its implementation based on Gaussian orbitals, including resolution-of-identity techniques and different approaches to the frequency integration of the self-energy or acceleration by offloading compute-intensive matrix operations using graphics processing units in a hybrid OpenMP/Cuda scheme. A distinctive feature of VOTCA–XTP is the capability to couple the calculation of electronic excitations to a classical polarizable environment on an atomistic level in a coupled quantum- and molecular-mechanics (QM/MM) scheme, where a complex morphology can be imported from Molecular Dynamics simulations. The capabilities and limitations of the GW–BSE implementation are illustrated with two examples. First, we study the dependence of optically active electron–hole excitations in a series of diketopyrrolopyrrole-based oligomers on molecular-architecture modifications and the number of repeat units. Second, we use the GW–BSE/MM setup to investigate the effect of polarization on localized and intermolecular charge-transfer excited states in morphologies of low-donor content rubrene–fullerene mixtures. These showcases demonstrate that our implementation currently allows us to treat systems with up to 2500 basis functions on regular shared-memory workstations, providing accurate descriptions of quasiparticle and coupled electron–hole excited states of various characters on an equal footing.

1.
C. W.
Tang
and
S. A.
Vanslyke
,
Appl. Phys. Lett.
51
,
913
(
1987
).
2.
C.
Adachi
,
Jpn. J. Appl. Phys., Part 1
53
,
060101
(
2014
).
3.
J. J.
Halls
,
C. A.
Walsh
,
N. C.
Greenham
,
E. A.
Marseglia
,
R. H.
Friend
,
S. C.
Moratti
, and
A. B.
Holmes
,
Nature
376
,
498
(
1995
).
4.
W.
Zhao
,
S.
Li
,
H.
Yao
,
S.
Zhang
,
Y.
Zhang
,
B.
Yang
, and
J.
Hou
,
J. Am. Chem. Soc.
139
,
7148
(
2017
).
5.
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
6.
B. E.
Logan
,
Nat. Rev. Microbiol.
7
,
375
(
2009
).
7.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
8.
C.
Risko
,
M. D.
McGehee
, and
J. L.
Brédas
,
Chem. Sci.
2
,
1200
(
2011
).
9.
K.
Hald
,
C.
Hättig
,
J.
Olsen
, and
P.
Jørgensen
,
J. Chem. Phys.
115
,
3545
(
2001
).
10.
K.
Hald
,
P.
Jørgensen
,
J.
Olsen
, and
M.
Jaszunski
,
J. Chem. Phys.
115
,
671
(
2001
).
11.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
12.
K.
Andersson
,
P. Ã.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
13.
14.
F.
Furche
and
R.
Ahlrichs
,
J. Chem. Phys.
117
,
7433
(
2002
).
15.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
16.
Z. L.
Cai
,
K.
Sendt
, and
J. R.
Reimers
,
J. Chem. Phys.
117
,
5543
(
2002
).
17.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
18.
S.
Kümmel
,
Adv. Energy Mater.
7
,
1700440
(
2017
).
19.
L.
Hedin
and
S.
Lundqvist
,
Solid State Physics
23
,
1
(
1970
).
20.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
21.
D.
Golze
,
M.
Dvorak
, and
P.
Rinke
,
Front. Chem.
7
,
377
(
2019
).
22.
Y.
Ma
,
M.
Rohlfing
, and
C.
Molteni
,
Phys. Rev. B
80
,
241405
(
2009
).
24.
B.
Baumeier
,
D.
Andrienko
,
Y.
Ma
, and
M.
Rohlfing
,
J. Chem. Theory Comput.
8
,
997
(
2012
).
25.
B.
Baumeier
,
D.
Andrienko
, and
M.
Rohlfing
,
J. Chem. Theory Comput.
8
,
2790
(
2012
).
26.
B.
Baumeier
,
M.
Rohlfing
, and
D.
Andrienko
,
J. Chem. Theory Comput.
10
,
3104
(
2014
).
27.
M. J.
Van Setten
,
F.
Weigend
, and
F.
Evers
,
J. Chem. Theory Comput.
9
,
232
(
2013
).
28.
M. J.
Van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
,
J. Chem. Theory Comput.
11
,
5665
(
2015
).
29.
D.
Varsano
,
E.
Coccia
,
O.
Pulci
,
A. M.
Conte
, and
L.
Guidoni
,
Comput. Theor. Chem.
1040-1041
,
338
(
2014
).
30.
D.
Golze
,
J.
Wilhelm
,
M. J.
van Setten
, and
P.
Rinke
,
J. Chem. Theory Comput.
14
,
4856
(
2018
).
31.
F.
Kaplan
,
M. E.
Harding
,
C.
Seiler
,
F.
Weigend
,
F.
Evers
, and
M. J.
Van Setten
,
J. Chem. Theory Comput.
12
,
2528
(
2016
).
32.
P.
Boulanger
,
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
10
,
1212
(
2014
).
33.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
11
,
3290
(
2015
).
34.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
,
Comput. Phys. Commun.
208
,
149
(
2016
).
35.
G.
Strinati
,
Riv. Nuovo Cimento, Ser. 3
11
,
1
(
1988
).
36.
R. W.
Godby
,
M.
Schlüter
, and
L. J.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
37.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
(
World Scientific
,
1995
), pp.
155
192
.
38.
Zenodo votca/xtp v1.6_rc1. (2019); available at .
39.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
,
J. Chem. Theory Comput.
5
,
3211
(
2009
).
40.
V.
Rühle
,
A.
Lukyanov
,
F.
May
,
M.
Schrader
,
T.
Vehoff
,
J.
Kirkpatrick
,
B.
Baumeier
, and
D.
Andrienko
,
J. Chem. Theory Comput.
7
,
3335
(
2011
).
41.
J.
Wehner
,
L.
Brombacher
,
J.
Brown
,
C.
Junghans
,
O.
Çaylak
,
Y.
Khalak
,
P.
Madhikar
,
G.
Tirimbò
, and
B.
Baumeier
,
J. Chem. Theory Comput.
14
,
6253
(
2018
).
42.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zhe
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
43.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
De Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
44.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
).
45.
J.
Li
,
G.
D’Avino
,
I.
Duchemin
,
D.
Beljonne
, and
X.
Blase
,
J. Phys. Chem. Lett.
7
,
2814
(
2016
).
46.
D.
Varsano
,
S.
Caprasecca
, and
E.
Coccia
,
J. Phys. Condens. Matter
29
,
13002
(
2017
).
47.
J.
Li
,
G.
D’Avino
,
I.
Duchemin
,
D.
Beljonne
, and
X.
Blase
,
Phys. Rev. B
97
,
035108
(
2018
).
48.
G.
Tirimbò
,
X.
de Vries
,
C. H. L.
Weijtens
,
P. A.
Bobbert
,
T.
Neumann
,
R.
Coehoorn
, and
B.
Baumeier
,
Phys. Rev. B
101
,
035402
(
2020
).
49.
B.
Baumeier
,
J.
Kirkpatrick
, and
D.
Andrienko
,
Phys. Chem. Chem. Phys.
12
,
11103
(
2010
).
50.
J.
Wehner
and
B.
Baumeier
,
J. Chem. Theory Comput.
13
,
1584
(
2017
).
51.
S.
Baral
,
M.
Phillips
,
H.
Yan
,
J.
Avenoso
,
L.
Gundlach
,
B.
Baumeier
, and
E.
Lyman
, chemRxiv:11347040.v1 (
2019
).
52.
J.
Wehner
and
B.
Baumeier
, “
Multiscale simulations of singlet and triplet exciton dynamics in energetically disordered molecular systems based on many-body Green’s functions theory
,”
New J. Phys.
(published online).
53.
D.
Chandran
and
K.-S.
Lee
,
Macromol. Res.
21
,
272
(
2013
).
54.
W.
Li
,
K. H.
Hendriks
,
M. M.
Wienk
, and
R. A.
Janssen
,
Acc. Chem. Res.
49
,
78
(
2016
).
55.
K. H.
Hendriks
,
A. S.
Wijpkema
,
J. J.
Van Franeker
,
M. M.
Wienk
, and
R. A.
Janssen
,
J. Am. Chem. Soc.
138
,
10026
(
2016
).
56.
E.
Collado-Fregoso
,
S. N.
Pugliese
,
M.
Wojcik
,
J.
Benduhn
,
E.
Bar-Or
,
L.
Perdigón Toro
,
U.
Hörmann
,
D.
Spoltore
,
K.
Vandewal
,
J. M.
Hodgkiss
, and
D.
Neher
,
J. Am. Chem. Soc.
141
,
2329
(
2019
).
57.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
58.
L. J.
Sham
and
T. M.
Rice
,
Phys. Rev.
144
,
708
(
1966
).
60.
W. G.
Aulbur
,
L.
Jönsson
, and
J. W.
Wilkins
, in
Solid State Physics: Advances in Research and Applications
, edited by
H.
Ehrenreich
and
F.
Spaepen
(
Academic Press
,
2000
), Vol. 54, pp.
1
218
.
61.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. B
62
,
4927
(
2000
).
62.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Courier Corporation
,
2003
).
63.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
,
J. Chem. Phys.
146
,
194108
(
2017
).
64.
D.
Jacquemin
,
I.
Duchemin
,
A.
Blondel
, and
X.
Blase
,
J. Chem. Theory Comput.
13
,
767
(
2017
).
65.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
66.
S.
Reine
,
T.
Helgaker
, and
R.
Lindh
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
290
(
2012
).
67.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
242
,
652
(
1995
).
68.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
,
Phys. Rev. B
83
,
115103
(
2011
).
69.
J.
Laflamme Janssen
,
B.
Rousseau
, and
M.
Côté
,
Phys. Rev. B
91
,
125120
(
2015
).
70.
Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation
, edited by
V. I.
Anisimov
(
CRC Press
,
Boca Raton, FL
,
2000
), p.
33 ff
.
71.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
,
5390
(
1986
).
72.
R. W.
Godby
and
R. J.
Needs
,
Phys. Rev. Lett.
62
,
1169
(
1989
).
73.
M.
Rohlfing
,
P.
Krüger
, and
J.
Pollmann
,
Phys. Rev. B
52
,
1905
(
1995
).
74.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
75.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
76.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
77.

Measured on a single thread of an Intel(R) Xeon(R) CPU E7-4830 v4@2.00GHz.

78.
ISO, ISO\IEC 14882:2014
, Information Technology—Programming Languages—C++,
International Organization for Standardization
,
Geneva, Switzerland
,
2014
.
79.
G.
Guennebaud
,
B.
Jacob
 et al, Eigen v3, http://eigen.tuxfamily.org,
2010
.
80.
Intel Math Kernel Library, Reference Manual,
Intel Corporation
,
2009
.
81.
HDF Group
, Hierarchical Data Format, version 5, https://www.hdfgroup.org/HDF5/,
1997–2019
.
82.
S.
Lehtola
,
C.
Steigemann
,
M. J.
Oliveira
, and
M. A.
Marques
,
SoftwareX
7
,
1
(
2018
).
83.
B.
Schling
,
The Boost C++ Libraries
(
XML Press
,
2011
).
84.
D.
Luebke
, in
2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(
IEEE
,
2008
), pp.
836
838
.
85.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
86.
J.
Demmel
,
J.
Dongarra
,
A.
Ruhe
, and
H.
van der Vorst
, in
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
, edited by
Z.
Bai
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA, USA
,
2000
).
87.
E.
Vecharynski
,
J.
Brabec
,
M.
Shao
,
N.
Govind
, and
C.
Yang
,
Comput. Phys. Commun.
221
,
42
(
2017
).
88.
M. L.
Leininger
,
C. D.
Sherrill
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Comput. Chem.
22
,
1574
(
2001
).
89.
R. B.
Morgan
,
Linear Algebra Appl.
154-156
,
289
(
1991
).
90.
A.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Oxford University Press
,
Oxford
,
2013
), p.
352
.
92.
P. T.
Van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
(
1998
).
93.
C.
Zhang
,
C.
Lu
,
Z.
Jing
,
C.
Wu
,
J.-P.
Piquemal
,
J. W.
Ponder
, and
P.
Ren
,
J. Chem. Theory Comput.
14
,
2084
(
2018
).
94.
C. M.
Breneman
and
K. B.
Wiberg
,
J. Comput. Chem.
11
,
361
(
1990
).
95.
A. J.
Stone
,
J. Chem. Theory Comput.
1
,
1128
(
2005
).
96.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
97.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
98.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
99.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
100.
G.
Bussi
,
T.
Zykova-Timan
, and
M.
Parrinello
,
J. Chem. Phys.
130
,
074101
(
2009
).
101.
A.
Bergner
,
M.
Dolg
,
W.
Küchle
,
H.
Stoll
, and
H.
Preuß
,
Mol. Phys.
80
,
1431
(
1993
).
102.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
103.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
123
,
214103
(
2005
).
104.
S.
Baroni
,
S.
de Gironcoli
,
A.
Dal Corso
, and
P.
Giannozzi
,
Rev. Mod. Phys.
73
,
515
(
2001
).
105.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
81
,
115105
(
2010
).
106.
J. D.
Elliott
,
N.
Colonna
,
M.
Marsili
,
N.
Marzari
, and
P.
Umari
,
J. Chem. Theory Comput.
15
,
3710
(
2019
).
107.
C.
Faber
,
P.
Boulanger
,
C.
Attaccalite
,
E.
Cannuccia
,
I.
Duchemin
,
T.
Deutsch
, and
X.
Blase
,
Phys. Rev. B
91
,
155109
(
2015
).
108.
S.
Lehtola
,
J. Chem. Phys.
151
,
241102
(
2019
).
109.
L. N.
Tran
,
J. A. R.
Shea
, and
E.
Neuscamman
,
J. Chem. Theory Comput.
15
,
4790
(
2019
).
110.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
,
J. Phys. Chem. A
112
,
13164
(
2008
).
You do not currently have access to this content.