In second harmonic generation (SHG), the energy of two incoming photons, e.g., from a femtosecond laser, can be combined in one outgoing photon of twice the energy, e.g., by means of a nonlinear crystal. The SHG efficiency, however, is limited. In this work, the harvested signal is maximized by composing a hybrid system consisting of a nonlinear crystal with a dense coverage of plasmonic nanostructures separated by narrow gaps. The method of self-assembled diblock-copolymer-based micellar lithography with subsequent electroless deposition is employed to cover the whole surface of a lithium niobate (LiNbO3) crystal. The interaction of plasmonic nanostructures with light leads to a strong electric near-field in the adjacent crystal. This near-field is harnessed to enhance the near-surface SHG signal from the nonlinear crystal. At the plasmon resonance of the gold nanoparticles, a pronounced enhancement of about 60-fold SHG is observed compared to the bare crystal within the confocal volume of a laser spot.

1.
M.
Kalmutzki
 et al, “
Synthesis and SHG properties of two new cyanurates: Sr3(O3C3N3)2 (SCY) and Eu3(O3C3N3)2 (ECY)
,”
Inorg. Chem.
53
(
23
),
12540
12545
(
2014
).
2.
M.
Houe
and
P.
Townsend
, “
An introduction to methods of periodic poling for second-harmonic generation
,”
J. Phys. D: Appl. Phys.
28
(
9
),
1747
(
1995
).
3.
P. J.
Campagnola
and
L. M.
Loew
, “
Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms
,”
Nat. Biotechnol.
21
(
11
),
1356
(
2003
).
4.
P.
Pantazis
 et al, “
Second harmonic generating (SHG) nanoprobes for in vivo imaging
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
33
),
14535
14540
(
2010
).
5.
M.
Yamada
 et al, “
First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation
,”
Appl. Phys. Lett.
62
(
5
),
435
436
(
1993
).
6.
E.
Yraola
 et al, “
Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+-doped periodically poled LiNbO3 laser crystal
,”
Adv. Mater.
25
(
6
),
910
915
(
2013
).
7.
F.
Dutto
 et al, “
Enhancement of second harmonic signal in nanofabricated cones
,”
Nano Lett.
13
(
12
),
6048
6054
(
2013
).
8.
D.
Bar-Lev
and
J.
Scheuer
, “
Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays
,”
Opt. Express
21
(
24
),
29165
29178
(
2013
).
9.
D.
Lehr
 et al, “
Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate
,”
Nano Lett.
15
(
2
),
1025
1030
(
2015
).
10.
W.
Fan
 et al, “
Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array
,”
Opt. Express
14
(
21
),
9570
9575
(
2006
).
11.
W.
Fan
 et al, “
Second harmonic generation from a nanopatterned isotropic nonlinear material
,”
Nano Lett.
6
(
5
),
1027
1030
(
2006
).
12.
F.
Niesler
 et al, “
Second-harmonic generation from split-ring resonators on a GaAs substrate
,”
Optics Lett.
34
(
13
),
1997
1999
(
2009
).
13.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2012
).
14.
C.
Langhammer
,
B.
Kasemo
, and
I.
Zorić
, “
Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios
,”
J. Chem. Phys.
126
(
19
),
194702
(
2007
).
15.
E.
Gürdal
 et al, “
Self-assembled quasi-hexagonal arrays of gold nanoparticles with small gaps for surface-enhanced Raman spectroscopy
,”
Beilstein J. Nanotechnol.
9
(
1
),
1977
1985
(
2018
).
16.
A.
Horrer
 et al, “
Plasmonic vertical dimer arrays as elements for biosensing
,”
Anal. Bioanal. Chem.
407
(
27
),
8225
8231
(
2015
).
17.
E.
Gürdal
 et al, “
Enhancement of the second harmonic signal of nonlinear crystals by a single metal nanoantenna
” (submitted) (
2019
).
18.
R.
Glass
,
M.
Möller
, and
J. P.
Spatz
, “
Block copolymer micelle nanolithography
,”
Nanotechnology
14
(
10
),
1153
(
2003
).
19.
L. F.
Kadem
 et al, “
Controlled self-assembly of hexagonal nanoparticle patterns on nanotopographies
,”
Langmuir
31
(
34
),
9261
9265
(
2015
).
20.
J. Y.
Cheng
 et al, “
Formation of a cobalt magnetic dot array via block copolymer lithography
,”
Adv. Mater.
13
(
15
),
1174
1178
(
2001
).
21.
H. S.
Moon
 et al, “
Atomic layer deposition assisted pattern multiplication of block copolymer lithography for 5 nm scale nanopatterning
,”
Adv. Funct. Mater.
24
(
27
),
4343
4348
(
2014
).
22.
H. H.
Jeong
 et al, “
Selectable nanopattern arrays for nanolithographic imprint and etch-mask applications
,”
Adv. Sci.
2
(
7
),
1500016
(
2015
).
23.
L.
Purwaningsih
 et al, “
Fabrication of multi-parametric platforms based on nanocone arrays for determination of cellular response
,”
Beilstein J. Nanotechnol.
2
,
545
(
2011
).
24.
F.
Kundrat
,
G.
Baffou
, and
J.
Polleux
, “
Shaping and patterning gold nanoparticles via micelle templated photochemistry
,”
Nanoscale
7
(
38
),
15814
15821
(
2015
).
25.
P.
Reichenbach
 et al, “
Nonlinear optical point light sources through field enhancement at metallic nanocones
,”
Opt. Express
22
(
13
),
15484
15501
(
2014
).
26.
A.
Horneber
 et al, “
Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution
,”
Phys. Chem. Chem. Phys.
17
(
33
),
21288
21293
(
2015
).
27.
A.
Horneber
 et al, “
Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers
,”
Phys. Chem. Chem. Phys.
15
(
21
),
8031
8034
(
2013
).
28.
J.
Wang
 et al, “
Carrier recombination and plasmonic emission channels in metallic photoluminescence
,”
Nanoscale
10
,
8240
(
2018
).
29.
J.
Zuloaga
and
P.
Nordlander
, “
On the energy shift between near-field and far-field peak intensities in localized plasmon systems
,”
Nano Lett.
11
(
3
),
1280
1283
(
2011
).
30.
T.
Züchner
,
A. V.
Failla
, and
A. J.
Meixner
, “
Light microscopy with doughnut modes: A concept to detect, characterize, and manipulate individual nanoobjects
,”
Angew. Chem., Int. Ed.
50
(
23
),
5274
5293
(
2011
).
31.
J.
Stadler
 et al, “
Tighter focusing with a parabolic mirror
,”
Opt. Lett.
33
(
7
),
681
683
(
2008
).
32.
M.
Fleischer
 et al, “
Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope
,”
Appl. Phys. Lett.
93
(
11
),
111114
(
2008
).
33.
C.
Wang
 et al, “
Integrated high quality factor lithium niobate microdisk resonators
,”
Opt. Express
22
(
25
),
30924
30933
(
2014
).
34.
U.
Hohenester
and
A.
Trügler
, “
MNPBEM–A Matlab toolbox for the simulation of plasmonic nanoparticles
,”
Comput. Phys. Commun.
183
(
2
),
370
381
(
2012
).
35.
D. E.
Zelmon
,
D. L.
Small
, and
D.
Jundt
, “
Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate
,”
J. Opt. Soc. Am. B
14
(
12
),
3319
3322
(
1997
).
You do not currently have access to this content.