Liquid-phase exfoliation, the use of a sheared liquid to delaminate graphite into few-layer graphene, is a promising technique for the large-scale production of graphene. However, the microscale and nanoscale fluid-structure processes controlling the exfoliation are not fully understood. Here, we perform non-equilibrium molecular dynamics simulations of a defect-free graphite nanoplatelet suspended in a shear flow and measure the critical shear rate γ̇c needed for the exfoliation to occur. We compare γ̇c for different solvents, including water and N-methyl-pyrrolidone, and nanoplatelets of different lengths. Using a theoretical model based on a balance between the work done by viscous shearing forces and the change in interfacial energies upon layer sliding, we are able to predict the critical shear rates γ̇c measured in simulations. We find that an accurate prediction of the exfoliation of short graphite nanoplatelets is possible only if both hydrodynamic slip and the fluid forces on the graphene edges are considered and if an accurate value of the solid–liquid surface energy is used. The commonly used “geometric-mean” approximation for the solid–liquid energy leads to grossly incorrect predictions.

1.
R.
Mas-Ballesté
,
C.
Gómez-Navarro
,
J.
Gómez-Herrero
, and
F.
Zamora
, “
2D materials: To graphene and beyond
,”
Nanoscale
3
,
20
30
(
2011
).
2.
N.
Mounet
,
M.
Gibertini
,
P.
Schwaller
,
D.
Campi
,
A.
Merkys
,
A.
Marrazzo
,
T.
Sohier
,
I. E.
Castelli
,
A.
Cepellotti
,
G.
Pizzi
, and
N.
Marzari
, “
Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
,”
Nat. Nanotechnol.
13
,
246
252
(
2018
).
3.
S. Z.
Butler
,
S. M.
Hollen
,
L.
Cao
,
Y.
Cui
,
J. A.
Gupta
,
H. R.
Gutiérrez
,
T. F.
Heinz
,
S. S.
Hong
,
J.
Huang
,
A. F.
Ismach
,
E.
Johnston-Halperin
,
M.
Kuno
,
V. V.
Plashnitsa
,
R. D.
Robinson
,
R. S.
Ruoff
,
S.
Salahuddin
,
J.
Shan
,
L.
Shi
,
M. G.
Spencer
,
M.
Terrones
,
W.
Windl
, and
J. E.
Goldberger
, “
Progress, challenges, and opportunities in two-dimensional materials beyond graphene
,”
ACS Nano
7
,
2898
2926
(
2013
).
4.
A. K.
Geim
, “
Graphene: Status and prospects
,”
Science
324
,
1530
1534
(
2010
).
5.
P.
Avouris
and
F.
Xia
, “
Graphene applications in electronics and photonics
,”
MRS Bull.
37
,
1225
1234
(
2012
).
6.
D. A. C.
Brownson
,
D. K.
Kampouris
, and
C. E.
Banks
, “
An overview of graphene in energy production and storage applications
,”
J. Power Sources
196
,
4873
4885
(
2011
).
7.
C.
Chung
,
Y.-k.
Kim
,
D.
Shin
,
S.-r.
Ryoo
,
B. H. E. E.
Hong
, and
D.-h.
Min
, “
Biomedical applications of graphene and graphene oxide
,”
Acc. Chem. Res.
46
,
2211
2224
(
2013
).
8.
M.
Yi
and
Z.
Shen
, “
A review on mechanical exfoliation for scalable production of graphene
,”
J. Mater. Chem. A
3
,
11700
(
2015
).
9.
Y.
Hernandez
,
V.
Nicolosi
,
M.
Lotya
,
F. M.
Blighe
,
Z.
Sun
,
S.
De
,
I. T.
Mcgovern
,
B.
Holland
,
M.
Byrne
,
K. Y. K.
Gun’Ko
,
J. J.
Boland
,
P.
Niraj
,
G.
Duesberg
,
S.
Krishnamurthy
,
R.
Goodhue
,
J.
Hutchison
,
V.
Scardaci
,
A. C.
Ferrari
, and
J. N.
Coleman
, “
High-yield production of graphene by liquid-phase exfoliation of graphite
,”
Nat. Nanotechnol.
3
,
563
568
(
2008
).
10.
J. N.
Coleman
, “
Liquid exfoliation of defect-free graphene
,”
Acc. Chem. Res.
46
,
14
22
(
2013
).
11.
M.
Yi
and
Z.
Shen
, “
Kitchen blender for producing high-quality few-layer graphene
,”
Carbon
78
,
622
626
(
2014
).
12.
X.
Chen
,
J. F.
Dobson
, and
C. L.
Raston
, “
Vortex fluidic exfoliation of graphite and boron nitride
,”
Chem. Commun.
48
,
3703
3705
(
2012
).
13.
K. R.
Paton
,
E.
Varrla
,
C.
Backes
,
R. J.
Smith
,
U.
Khan
,
A.
O’Neill
,
C.
Boland
,
M.
Lotya
,
O. M.
Istrate
,
P.
King
,
T.
Higgins
,
S.
Barwich
,
P.
May
,
P.
Puczkarski
,
I.
Ahmed
,
M.
Moebius
,
H.
Pettersson
,
E.
Long
,
J.
Coelho
,
S. E.
O’Brien
,
E. K.
McGuire
,
B. M.
Sanchez
,
G. S.
Duesberg
,
N.
McEvoy
,
T. J.
Pennycook
,
C.
Downing
,
A.
Crossley
,
V.
Nicolosi
, and
J. N.
Coleman
, “
Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids
,”
Nat. Mater.
13
,
624
630
(
2014
).
14.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
15.
V.
Singh
,
D. L.
Koch
,
G.
Subramanian
, and
A. D.
Stroock
, “
Rotational motion of a thin axisymmetric disk in a low Reynolds number linear flow
,”
Phys. Fluids
26
,
033303
(
2014
).
16.
S.
Ravula
,
S. N.
Baker
,
G.
Kamath
, and
G. A.
Baker
, “
Ionic liquid-assisted exfoliation and dispersion: Stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions
,”
Nanoscale
7
,
4338
4353
(
2015
).
17.
S.
Wang
,
Y.
Zhang
,
N.
Abidi
, and
L.
Cabrales
, “
Wettability and surface free energy of graphene films
,”
Langmuir
25
,
11078
11081
(
2009
).
18.
C. D.
van Engers
,
N. E. A.
Cousens
,
N.
Grobert
,
B.
Zappone
, and
S.
Perkin
, “
Direct measurement of the surface energy of graphene
,”
Nano Lett.
17
,
3815
3821
(
2017
).
19.
Y.
Hernandez
,
M.
Lotya
,
D.
Rickard
,
S. D.
Bergin
, and
J. N.
Coleman
, “
Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery
,”
Langmuir
26
,
3208
3213
(
2010
).
20.
X.
An
,
T.
Simmons
,
R.
Shah
,
C.
Wolfe
,
K. M.
Lewis
,
M.
Washington
,
S. K.
Nayak
,
S.
Talapatra
, and
S.
Kar
, “
Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications
,”
Nano Lett.
10
,
4295
4301
(
2010
).
21.
C.-J.
Shih
,
S.
Lin
,
M. S.
Strano
, and
D.
Blankschtein
, “
Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: Molecular dynamics simulations and kinetic theory of colloid aggregation
,”
J. Am. Chem. Soc.
132
,
14638
14648
(
2010
).
22.
V.
Sresht
,
A. A.
Pádua
, and
D.
Blankschtein
, “
Liquid-phase exfoliation of phosphorene: Design rules from molecular dynamics simulations
,”
ACS Nano
9
,
8255
8268
(
2015
).
23.
E.
Bordes
,
J.
Szala-Bilnik
, and
A. H.
Padua
, “
Exfoliation of graphene and fluorographene in molecular and ionic liquids
,”
Faraday Discuss.
206
,
61
75
(
2018
).
24.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular-dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
25.
S. J.
Stuart
,
A. B.
Tutein
,
J. A.
Harrison
, and
I.
Introduction
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Chem. Phys.
112
,
6472
6486
(
2000
).
26.
J. L.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
27.
N.
Schmid
,
A. P.
Eichenberger
,
A.
Choutko
,
S.
Riniker
,
M.
Winger
,
A. E.
Mark
, and
W. F.
Van Gunsteren
, “
Definition and testing of the GROMOS force-field versions 54A7 and 54B7
,”
Eur. Biophys. J.
40
,
843
856
(
2011
).
28.
A. K.
Malde
,
L.
Zuo
,
M.
Breeze
,
M.
Stroet
,
D.
Poger
,
P. C.
Nair
,
C.
Oostenbrink
, and
A. E.
Mark
, “
An automated force field topology builder (ATB) and repository: Version 1.0
,”
J. Chem. Theory Comput.
7
,
4026
4037
(
2011
).
29.
S.
Nose
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
30.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
31.
M. A.
González
and
J. L. F.
Abascal
, “
The shear viscosity of rigid water models
,”
J. Chem. Phys.
132
,
096101
(
2010
).
32.
A.
Henni
,
J. J.
Hromek
,
P.
Tontiwachwuthikul
, and
A.
Chakma
, “
Volumetric properties and viscosities for aqueous N-Methyl-2-pyrrolidone solutions from 25 °C to 70 °C
,”
J. Chem. Eng. Data
49
,
231
234
(
2004
).
33.
D. J.
Henry
,
C. A.
Lukey
,
E.
Evans
, and
I.
Yarovsky
, “
Theoretical study of adhesion between graphite, polyester and silica surfaces
,”
Mol. Simul.
31
,
449
455
(
2005
).
34.
A.
Ferguson
and
E. J.
Irons
, “
On surface energy and surface entropy
,”
Proc. Phys. Soc.
53
,
182
185
(
1941
).
35.
A. B.
López
,
A.
García-Abuín
,
D.
Gómez-Díaz
,
M. D.
La Rubia
, and
J. M.
Navaza
, “
Density, speed of sound, viscosity, refractive index and surface tension of N-methyl-2-pyrrolidone + diethanolamine (or triethanolamine) from T = (293.15 to 323.15) K
,”
J. Chem. Thermodyn.
61
,
1
6
(
2013
).
36.
J.
Alejandre
and
G. A.
Chapela
, “
The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions
,”
J. Chem. Phys.
132
,
014701
(
2010
).
37.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
How fast does water flow in carbon nanotubes ?
,”
J. Chem. Phys.
138
,
094701
(
2013
).
38.
E.
Lauga
,
M.
Brenner
, and
H.
Stone
,
Microfluidics: The No-Slip Boundary Condition
, Springer Handbook of Experimental Fluid Mechanics (
Springer
,
2007
), pp.
1219
1240
.
39.
L.
Bocquet
and
J. L.
Barrat
, “
Flow boundary conditions from nano- to micro-scales
,”
Soft Matter
3
,
685
693
(
2006
).
40.
C.
Pozrikidis
,
Boundary Integral and Singularity Methods for Linearized Viscous Flow
(
Cambridge University Press
,
Cambridge
,
1992
).
41.
C.
Kamal
,
S.
Gravelle
, and
L.
Botto
, “
Graphene nanoplatelets attain a stable orientation in a shear flow
” (unpublished).
42.
A.
Maali
,
T.
Cohen-bouhacina
, and
H.
Kellay
, “
Measurement of the slip length of water flow on graphite surface
,”
Appl. Phys. Lett.
92
,
053101
(
2008
).
43.
D.
Ortiz-Young
,
H.-C.
Chiu
,
S.
Kim
,
K.
Voïtchovsky
, and
E.
Riedo
, “
The interplay between apparent viscosity and wettability in nanoconfined water
,”
Nat. Commun.
4
,
2482
(
2013
).
44.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
, “
Friction of water on graphene and hexagonal BN from ab initio methods: Very different slippage despite very similar interface structures
,”
Nano Lett.
14
,
6872
6877
(
2014
).
45.
J.
Shen
,
Y.
He
,
J.
Wu
,
C.
Gao
,
K.
Keyshar
,
X.
Zhang
,
Y.
Yang
,
M.
Ye
,
R.
Vajtai
,
J.
Lou
, and
P. M.
Ajayan
, “
Liquid phase exfoliation of two-dimensional materials by directly probing and Matching surface tension components
,”
Nano Lett.
15
,
5449
5454
(
2015
).
46.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
343
(
1949
).
47.
T.
Dreher
,
C.
Lemarchand
,
L.
Soulard
,
E.
Bourasseau
,
P.
Malfreyt
, and
N.
Pineau
, “
Calculation of a solid/liquid surface tension: A methodological study
,”
J. Chem. Phys.
148
,
034702
(
2018
).
48.
T.
Dreher
,
C.
Lemarchand
,
N.
Pineau
,
E.
Bourasseau
,
A.
Ghoufi
, and
P.
Malfreyt
, “
Calculation of the interfacial tension of the graphene-water interaction by molecular simulations
,”
J. Chem. Phys.
150
,
014703
(
2019
).
49.
P. G.
Karagiannidis
,
S. A.
Hodge
,
L.
Lombardi
,
F.
Tomarchio
,
N.
Decorde
,
S.
Milana
,
I.
Goykhman
,
Y.
Su
,
S. V.
Mesite
,
D. N.
Johnstone
,
R. K.
Leary
,
P. A.
Midgley
,
N. M.
Pugno
,
F.
Torrisi
, and
A. C.
Ferrari
, “
Microfluidization of graphite and formulation of graphene-based conductive inks
,”
ACS Nano
11
,
2742
2755
(
2017
).
50.
P.
Poulin
,
R.
Jalili
,
W.
Neri
,
F.
Nallet
,
T.
Divoux
,
A.
Colin
,
S. H.
Aboutalebi
,
G.
Wallace
, and
C.
Zakri
, “
Superflexibility of graphene oxide
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
11088
(
2016
).
51.
P. S.
Lingard
and
R. L.
Whitmore
, “
The deformation of disc-shaped particles by a shearing fluid with application to the red blood cell
,”
J. Colloid Interface Sci.
49
,
119
127
(
1974
).
52.
L.
Botto
, “
Towards nanomechanical models of liquid-phase exfoliation of layered 2D nanomaterials: Analysis of a pi-peel model
,”
Front. Mater.
6
,
302
(
2019
).
53.
G.
Salussolia
,
N.
Pugno
,
E.
Barbieri
, and
L.
Botto
, “
Micromechanics of liquid-phase exfoliation of a layered 2D material: A hydrodynamic peeling model
,”
J. Mech. Phys. Solids
134
,
103764
(
2019
).

Supplementary Material

You do not currently have access to this content.