The ground-state intermolecular dissociation energies D0(S0) of supersonic-jet cooled intermolecular complexes of 1-naphthol (1NpOH) with the bi- and tricycloalkanes trans-decalin, cis-decalin, and adamantane were measured using the stimulated-emission-pumping/resonant two-photon ionization (SEP-R2PI) method. Using UV/UV holeburning, we identified two isomers (A and B) of the adamantane and trans-decalin complexes and four isomers (A–D) of the cis-decalin complex. For 1NpOH·adamantane A and B, the D0(S0) values are 21.6 ± 0.15 kJ/mol and 21.2 ± 0.32 kJ/mol, those of 1NpOH·trans-decalin A and B are 28.7 ± 0.3 kJ/mol and 28.1 ± 0.9 kJ/mol, and those of 1NpOH·cis-decalin A and B are 28.9 ± 0.15 kJ/mol and 28.7 ± 0.3 kJ/mol. Upon S0S1 electronic excitation of the 1NpOH moiety, the dissociation energies of adamantane, trans-decalin, and the cis-decalin isomer C change by <1% and those of cis-decalin isomers A, B, and D increase only slightly (1%–3%). This implies that the hydrocarbons are dispersively adsorbed to a naphthalene “face.” Calculations using the dispersion-corrected density functional theory methods B97-D3 and B3LYP-D3 indeed predict that the stable structures have face geometries. The B97-D3 calculated D0(S0) values are within 1 kJ/mol of the experiment, while B3LYP-D3 predicts D0 values that are 1.4–3.3 kJ/mol larger. Although adamantane has been recommended as a “dispersion-energy donor,” the binding energies of the trans- and cis-decalin adducts to 1NpOH are 30% larger than that of adamantane. In fact, the D0 value of 1NpOH·adamantane is close to that of 1NpOH·cyclohexane, reflecting the nearly identical contact layer between the two molecules.

1.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces: Their Origin and Determination
(
Clarendon Press
,
Oxford
,
1981
).
2.
M.
Nishio
,
M.
Hirota
, and
Y.
Umezawa
,
The CH/π Interaction: Evidence, Nature, and Consequences
(
John Wiley & Sons
,
1998
).
3.
G. R.
Desiraju
and
T.
Steiner
,
The Weak Hydrogen Bond in Structural Chemistry and Biology
(
Oxford University Press
,
2001
).
4.
Y.
Umezawa
,
S.
Tsuboyama
,
K.
Honda
,
J.
Uzawa
, and
M.
Nishio
,
Bull. Chem. Soc. Jpn.
71
,
1207
(
1998
).
5.
P. E. S.
Wormer
and
A.
van der Avoird
,
Chem. Rev.
100
,
4109
(
2000
).
6.
M.
Mons
,
I.
Dimicoli
, and
F.
Piuzzi
,
Int. Rev. Phys. Chem.
21
,
101
(
2002
).
7.
P.
Hobza
,
Acc. Chem. Res.
45
,
663
(
2012
).
8.
C. D.
Sherrill
,
Acc. Chem. Res.
46
,
1020
(
2013
).
9.
J. P.
Wagner
and
P.
Schreiner
,
Angew. Chem., Int. Ed.
54
,
12274
(
2015
).
10.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
(
2016
).
11.
J. A.
Frey
,
C.
Holzer
,
W.
Klopper
, and
S.
Leutwyler
,
Chem. Rev.
116
,
5614
(
2016
).
12.
J.
Herrmann
,
R. A.
DiStasio
, and
A.
Tkatchenko
,
Chem. Rev.
117
,
4714
(
2017
).
13.
14.
R.
Eisenschitz
and
F.
London
,
Z. Phys.
60
,
491
(
1930
).
15.
S.
Grimme
,
R.
Huenerbein
, and
S.
Ehrlich
,
ChemPhysChem
12
,
1258
(
2011
).
16.
S.
Maity
,
R.
Knochenmuss
,
C.
Holzer
,
G.
Féraud
,
J. A.
Frey
,
W.
Klopper
, and
S.
Leutwyler
,
J. Chem. Phys.
145
,
164304
(
2016
).
17.
S.
Maity
,
P.
Ottiger
,
F. A.
Balmer
,
R.
Knochenmuss
, and
S.
Leutwyler
,
J. Chem. Phys.
145
,
244314
(
2016
).
18.
R.
Knochenmuss
,
S.
Maity
,
F. A.
Balmer
,
C.
Müller
, and
S.
Leutwyler
,
J. Chem. Phys.
149
,
034306
(
2018
).
19.
W. F.
Seyer
and
C. W.
Mann
,
J. Chem. Thermodyn.
67
,
328
(
1945
).
20.
R. C.
Hammersley
, “
A re-consideration of the vapour pressure of cis-decalin
,” M.Sc. thesis,
Department of Chemical Engineering, University of British Columbia
,
1947
.
21.
A. B.
Bazyleva
,
A. V.
Blokhin
,
G. J.
Kabo
,
M. B.
Charapennikau
,
V. N.
Emelyanenko
,
S. P.
Verevkin
, and
V.
Diky
,
J. Phys. Chem. B
115
,
10064
(
2011
).
22.
H.-L.
Dai
and
R. W.
Field
,
Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping
(
World Scientific
,
Singapore
,
1995
).
23.
T.
Droz
,
T.
Bürgi
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
4035
(
1995
).
24.
T.
Bürgi
,
T.
Droz
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
7228
(
1995
).
25.
T.
Bürgi
,
T.
Droz
, and
S.
Leutwyler
,
Chem. Phys. Lett.
246
,
291
(
1995
).
26.
C.
Wickleder
,
T.
Droz
,
T.
Bürgi
, and
S.
Leutwyler
,
Chem. Phys. Lett.
264
,
257
(
1997
).
27.
C.
Wickleder
,
D.
Henseler
, and
S.
Leutwyler
,
J. Chem. Phys.
116
,
1850
(
2002
).
28.
R.
Knochenmuss
,
S.
Maity
, and
S.
Leutwyler
,
Chimia
71
,
7
(
2017
).
29.
R.
Knochenmuss
,
R. K.
Sinha
, and
S.
Leutwyler
,
J. Chem. Phys.
148
,
134302
(
2018
).
30.
R.
Knochenmuss
,
R. K.
Sinha
,
A.
Poblotzki
,
T.
Den
, and
S.
Leutwyler
,
J. Chem. Phys.
149
,
204311
(
2018
).
31.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
32.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
33.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
34.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
35.
R.
Knochenmuss
,
R.
Sinha
, and
S.
Leutwyler
,
J. Chem. Phys.
150
,
234303
(
2019
).
36.
K. E.
Johnson
,
L.
Wharton
, and
D. H.
Levy
,
J. Chem. Phys.
69
,
2719
(
1978
).
37.
J. L.
Knee
,
L. R.
Khundkar
, and
A. H.
Zewail
,
J. Chem. Phys.
87
,
115
(
1987
).
38.
A.
Heikal
,
L.
Banares
,
D. H.
Semmes
, and
A. H.
Zewail
,
Chem. Phys.
156
,
231
(
1991
).
39.
E. A.
Outhouse
,
G. A.
Bickel
,
D. R.
Demmer
, and
S. C.
Wallace
,
J. Chem. Phys.
95
,
6261
(
1991
).
40.
J. M.
Smith
,
X.
Zhang
, and
J. L.
Knee
,
J. Chem. Phys.
99
,
2550
(
1993
).
41.
A. D.
Crowell
and
R. B.
Steele
,
J. Chem. Phys.
34
,
1347
(
1961
).
42.
M. J.
Ondrechen
,
Z.
Berkovitch-Yellin
, and
J.
Jortner
,
J. Am. Chem. Soc.
103
,
6586
(
1981
).
43.
S.
Leutwyler
and
J.
Jortner
,
J. Phys. Chem.
91
,
5558
(
1987
).
44.
P.
Kowalewski
,
H.-M.
Frey
,
D.
Infanger
, and
S.
Leutwyler
,
J. Phys. Chem. A
119
,
11215
(
2015
).
45.
S.
Haldar
,
R.
Gnanasekaran
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
17
,
26645
(
2015
).
46.
See https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/ for the DFT-D3 source code corresponding to the model of Ref. 32; accessed
2019
.

Supplementary Material

You do not currently have access to this content.