We present an approach to master the well-known challenge of calculating the contribution of d-bands to plasmon-induced hot carrier rates in metallic nanoparticles. We generalize the widely used spherical well model for the nanoparticle wavefunctions to flat d-bands using the envelope function technique. Using Fermi’s golden rule, we calculate the generation rates of hot carriers after the decay of the plasmon due to transitions either from a d-band state to an sp-band state or from an sp-band state to another sp-band state. We apply this formalism to spherical silver nanoparticles with radii up to 20 nm and also study the dependence of hot carrier rates on the energy of the d-bands. We find that for nanoparticles with a radius less than 2.5 nm, sp-band state to sp-band state transitions dominate hot carrier production, while d-band state to sp-band state transitions give the largest contribution for larger nanoparticles.

1.
J. B.
Khurgin
,
Faraday Discuss.
214
,
35
(
2019
).
3.
N. J.
Halas
,
S.
Lal
,
W. S.
Chang
,
S.
Link
, and
P.
Nordlander
,
Chem. Rev.
111
,
3913
(
2011
).
4.
G.
Baffou
and
R.
Quidant
,
Chem. Soc. Rev.
43
,
3898
(
2014
).
5.
A. O.
Govorov
,
H.
Zhang
, and
Y. K.
Gun’Ko
,
J. Phys. Chem. C
117
,
16616
(
2013
).
6.
M.
Li
,
Z.
Yu
,
Q.
Liu
,
L.
Sun
, and
W.
Huang
,
Chem. Eng. J.
286
,
232
(
2016
).
7.
P.
Narang
,
R.
Sundararaman
, and
H. A.
Atwater
,
Nanophotonics
5
,
96
(
2016
).
8.
G. V.
Hartland
,
L. V.
Besteiro
,
P.
Johns
, and
A. O.
Govorov
,
ACS Energy Lett.
2
,
1641
(
2017
).
9.
N. E.
Christensen
,
Phys. Status Solidi B
54
,
551
(
1972
).
10.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard
, and
H. A.
Atwater
,
Nat. Commun.
5
,
5788
(
2014
).
11.
J. S.
DuChene
,
G.
Tagliabue
,
A. J.
Welch
,
W.-H.
Cheng
, and
H. A.
Atwater
,
Nano Lett.
18
,
2545
(
2018
).
12.
M.
Berdakin
and
O. A.
Douglas-gallardo
,
J. Phys. Chem. C
124
,
1631
(
2020
).
13.
T.
Barman
,
A. A.
Hussain
,
B.
Sharma
, and
A. R.
Pal
,
Sci. Rep.
5
,
18276
(
2015
).
14.
A.
Manjavacas
,
J. G.
Liu
,
P.
Nordlander
, and
K.
Vikram
,
ACS Nano
8
,
7630
(
2014
).
15.
S. D.
Forno
,
L.
Ranno
, and
J.
Lischner
,
J. Phys. Chem. C
122
,
8517
(
2018
).
17.
A.
Crai
,
A.
Pusch
,
D. E.
Reiter
,
L.
Román Castellanos
,
T.
Kuhn
, and
O.
Hess
,
Phys. Rev. B
98
,
165411
(
2017
).
18.
C.
Yannouleas
,
E.
Vigezzi
, and
R. A.
Broglia
,
Phys. Rev. B
47
,
9849
(
1993
).
19.
C. S.
Kumarasinghe
,
M.
Premaratne
,
Q.
Bao
, and
G. P.
Agrawal
,
Sci. Rep.
5
,
12140
(
2015
).
20.
J. L.
Martins
,
R.
Car
, and
J.
Buttet
,
Surf. Sci.
106
,
265
(
1981
).
21.
M.
Bernardi
,
J.
Mustafa
,
J. B.
Neaton
, and
S. G.
Louie
,
Nat. Commun.
6
,
7044
(
2015
).
22.
M.
Kuisma
,
A.
Sakko
,
T. P.
Rossi
,
A. A. H.
Larsen
,
J.
Enkovaara
,
L.
Lehtovaara
, and
T. T.
Rantala
,
Phys. Rev. B
91
,
115431
(
2015
).
23.
T. P.
Rossi
,
M.
Kuisma
,
M. J.
Puska
,
R. M.
Nieminen
, and
P.
Erhart
,
J. Chem. Theory Comput.
13
,
4779
(
2017
).
24.
J.
Ma
,
Z.
Wang
, and
L.-W.
Wang
,
Nat. Commun.
6
,
10107
(
2015
).
25.
J. M.
Luttinger
and
W.
Kohn
,
Phys. Rev.
97
,
869
(
1955
).
26.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
New York
,
1976
), Vol. 8.
27.
C.
Kittel
, in
Quantum Theory of Solids
, edited by
C. Y.
Fong
(
Wiley and Sons
,
1985
).
28.
G.
Weick
,
R. A.
Molina
,
D.
Weinmann
, and
R. A.
Jalabert
,
Phys. Rev. B
72
,
115410
(
2005
).
30.
C.
Sonnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
, and
J.
Feldmann
,
New J. Phys.
4
,
93
(
2002
).
31.
M.
Cazalilla
,
J.
Dolado
,
A.
Rubio
, and
P.
Echenique
,
Phys. Rev. B
61
,
8033
(
2000
).
32.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
L.
Román Castellanos
,
O.
Hess
, and
J.
Lischner
,
Commun. Phys.
2
,
47
(
2019
).
You do not currently have access to this content.