Markov processes are widely used models for investigating kinetic networks. Here, we collate and present a variety of results pertaining to kinetic network models in a unified framework. The aim is to lay out explicit links between several important quantities commonly studied in the field, including mean first passage times (MFPTs), correlation functions, and the Kemeny constant. We provide new insights into (i) a simple physical interpretation of the Kemeny constant, (ii) a relationship to infer equilibrium distributions and rate matrices from measurements of MFPTs, and (iii) a protocol to reduce the dimensionality of kinetic networks based on specific requirements that the MFPTs in the coarse-grained system should satisfy. We prove that this protocol coincides with the one proposed by Hummer and Szabo [J. Phys. Chem. B 119, 9029 (2014)], and it leads to a variational principle for the Kemeny constant. Finally, we introduce a modification of this protocol, which preserves the Kemeny constant. Our work underpinning the theoretical aspects of kinetic networks will be useful in applications including milestoning and path sampling algorithms in molecular simulations.

1.
G.
Hummer
and
A.
Szabo
,
J. Phys. Chem. B
119
,
9029
(
2014
).
2.
F.
Noé
and
E.
Rosta
,
J. Chem. Phys.
151
,
190401
(
2019
).
3.
H.
Grubmüller
and
P.
Tavan
,
J. Chem. Phys.
101
,
5047
(
1994
).
4.
S.
Kube
and
M.
Weber
,
J. Chem. Phys.
126
,
024103
(
2007
).
5.
F.
Noé
,
I.
Horenko
,
C.
Schütte
, and
J. C.
Smith
,
J. Chem. Phys.
126
,
155102
(
2007
).
6.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
7.
D.
Bicout
and
A.
Szabo
,
Protein Sci.
9
,
452
(
2000
).
8.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
9.
K. M.
Thayer
,
B.
Lakhani
, and
D. L.
Beveridge
,
J. Phys. Chem. B
121
,
5509
(
2017
).
10.
A.
Bujotzek
and
M.
Weber
,
J. Bioinf. Comput. Biol.
07
,
811
(
2009
).
11.
S.
Doerr
and
G.
De Fabritiis
,
J. Chem. Theory Comput.
10
,
2064
(
2014
).
12.
C. J.
Dickson
,
V.
Hornak
,
R. A.
Pearlstein
, and
J. S.
Duca
,
J. Am. Chem. Soc.
139
,
442
(
2017
).
13.
M.
Badaoui
,
A.
Kells
,
C.
Molteni
,
C. J.
Dickson
,
V.
Hornak
, and
E.
Rosta
,
J. Phys. Chem. B
122
,
11571
(
2018
).
14.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
15.
An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
, edited by
G.
Bowman
,
V. S.
Pande
, and
F.
Noe
(
Springer
,
The Netherlands
,
2014
).
16.
B. E.
Husic
and
V. S.
Pande
,
J. Am. Chem. Soc.
140
,
2386
(
2018
).
17.
C.
Wehmeyer
,
M. K.
Scherer
,
T.
Hempel
,
B. E.
Husic
,
S.
Olsson
, and
F.
Noé
,
Living J. Comput. Mol. Sci.
1
,
1
12
(
2019
).
18.
L.
Martini
,
A.
Kells
,
R.
Covino
,
G.
Hummer
,
N.-V.
Buchete
, and
E.
Rosta
,
Phys. Rev. X
7
,
031060
(
2017
).
19.
A.
Berezhkovskii
and
A.
Szabo
,
J. Chem. Phys.
150
,
054106
(
2019
).
20.
A.
Kells
,
Z. E.
Mihálka
,
A.
Annibale
, and
E.
Rosta
,
J. Chem. Phys.
150
,
134107
(
2019
).
21.
A.
Kells
,
A.
Annibale
, and
E.
Rosta
,
J. Chem. Phys.
149
,
072324
(
2018
).
22.
A.
Szabo
,
K.
Schulten
, and
Z.
Schulten
,
J. Chem. Phys.
72
,
4350
(
1980
).
23.
A.
Perico
,
R.
Pratolongo
,
K. F.
Freed
,
R. W.
Pastor
, and
A.
Szabo
,
J. Chem. Phys.
98
,
564
(
1993
).
24.
D.
Bicout
and
A.
Szabo
,
J. Chem. Phys.
106
,
10292
(
1997
).
25.
J. G.
Kemeny
and
J. L.
Snell
,
Finite Markov Chains
(
Van Nostrand
,
Princeton, NJ
,
1960
).
26.
P. G.
Doyle
, arXiv:0909.2636 (
2009
).
27.
D.
Bini
,
J.
Hunter
,
G.
Latouche
,
B.
Meini
, and
P.
Taylor
,
J. Appl. Prob.
55
,
1025
(
2018
).
29.
J.
Berkhout
and
B. F.
Heidergott
,
Oper. Res.
67
,
892
(
2019
).
30.
Z.
Zhang
,
Y.
Sheng
,
Z.
Hu
, and
G.
Chen
,
Chaos
22
,
043129
(
2012
).
31.
C. H.
Bennett
,
Algorithms for Chemical Computations
, ACS Symposium Series Vol. 46 (
American Chemical Society
,
Washington, DC
,
1977
), Chap. 4, pp.
63
97
.
32.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
33.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
34.
T.
Van Erp
,
D.
Moroni
, and
P.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
35.
H.
Jung
,
K.-I.
Okazaki
, and
G.
Hummer
,
J. Chem. Phys.
147
,
152716
(
2017
).
36.
A. K.
Faradjian
and
R.
Elber
,
J. Chem. Phys.
120
,
10880
(
2004
).
37.
E.
Vanden-Eijnden
,
M.
Venturoli
,
G.
Ciccotti
, and
R.
Elber
,
J. Chem. Phys.
129
,
174102
(
2008
).
38.
L.
Lin
,
J.
Lu
, and
E.
Vanden-Eijnden
,
Commun. Pure Appl. Math.
71
,
1149
(
2018
).
40.
E.
Hruska
,
J.
Abella
,
F.
Nüske
,
L.
Kavraki
, and
C.
Clementi
,
J. Chem. Phys.
149
,
244119
(
2018
).
41.
M.
Zimmerman
,
J.
Porter
,
X.
Sun
,
R.
Silva
, and
G.
Bowman
,
J. Chem. Theory Comput.
14
,
5459
(
2018
).
42.
D.
Lecina
,
J.
Gilabert
, and
V.
Guallar
,
Sci. Rep.
7
,
8466
(
2017
).
43.
Z.
Shamsi
,
A.
Moffett
, and
D.
Shukla
,
Sci. Rep.
7
,
12700
(
2017
).
44.
R.
Zwanzig
,
J. Stat. Phys.
30
,
255
(
1983
).
45.
G. R.
Bowman
,
X.
Huang
, and
V. S.
Pande
,
Methods
49
,
197
(
2009
).
46.
M.
Kac
,
Bull. Am. Math. Soc.
53
,
1002
1010
(
1947
).
47.
L.
Lovász
,
Combinatorics, Paul Erdős is Eighty
, edited by
D.
Miklós
,
V. T.
Sós
, and
T.
Szőnyi
(
János Bolyai Mathematical Society
,
Budapest
,
1996
), Vol. 2, pp.
353
398
.
48.
Z.
Zhang
,
T.
Shan
, and
G.
Chen
,
Phys. Rev. E
87
,
012112
(
2013
).
49.
J. J.
Hunter
,
Commun. Stat. Theory Methods
43
,
1309
1321
(
2014
).
50.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
51.
C. M.
Grinstead
and
J. L.
Snell
,
Introduction to Probability
(
American Mathematical Society
,
Providence, RI
,
1997
).
52.
P.
Coolen-Schrijner
and
E. A.
van Doorn
,
Prob. Eng. Informat. Sci.
16
,
351
366
(
2002
).
53.
E.
Weinan
and
E.
Vanden-Eijnden
,
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
54.
E.
Vanden-Eijnden
and
M.
Venturoli
,
J. Chem. Phys.
131
,
044120
(
2009
).
55.
M. L.
Zhuo Qi Lee
and
W.-J.
Hsu
,
PLoS One
9
,
e93348
(
2014
).
56.
I.
Androulakis
,
E.
Yang
, and
R.
Almon
,
Annu. Rev. Biomed. Eng.
9
,
205
228
(
2007
).
57.
G. R.
Bowman
,
J. Chem. Phys.
137
,
134111
(
2012
).
You do not currently have access to this content.