Recent experiments have shown that colloidal suspensions can spontaneously self-assemble into dense clusters of various internal structures, sizes, and dynamical properties when doped with active Janus particles. Characteristically, these clusters move ballistically during their formation but dynamically revert their velocity and temporarily move opposite to the self-propulsion direction of the Janus particles they contain. Here, we explore a simple effective model of colloidal mixtures that allows reproducing most aspects seen in experiments, including the morphology and the velocity-reversal of the clusters. We attribute the latter to the nonreciprocal phoretic attractions of the passive particles to the active colloids’ caps, taking place even at close contact and pushing the active particles backwards. When the phoretic interactions are repulsive, in turn, they cause dynamical aggregation of passive colloids in the chemical density minima produced by the active particles, as recently seen in experiments; in other parameter regimes, they induce traveling fronts of active particles pursued by passive ones coexisting with an active gas.

1.
S. A.
Eming
,
P.
Martin
, and
M.
Tomic-Canic
, “
Wound repair and regeneration: Mechanisms, signaling, and translation
,”
Sci. Transl. Med.
6
,
265sr6
(
2014
).
2.
R.
Weinkamer
and
P.
Fratzl
, “
Mechanical adaptation of biological materials—The examples of bone and wood
,”
Mater. Sci. Eng., C
31
,
1164
(
2011
).
3.
A. J.
Mieszawska
and
D. L.
Kaplan
, “
Smart biomaterials-regulating cell behavior through signaling molecules
,”
BMC Biol.
8
,
59
(
2010
).
4.
H. M.
Beyer
,
R.
Engesser
,
M.
Hörner
,
J.
Koschmieder
,
P.
Beyer
,
J.
Timmer
,
M. D.
Zurbriggen
, and
W.
Weber
, “
Synthetic biology makes polymer materials count
,”
Adv. Mater.
30
,
1800472
(
2018
).
5.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K.
St. Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
(
2004
).
6.
M. C.
Marchetti
,
J.-F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
7.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
8.
R.
Ni
,
M. A. C.
Stuart
, and
M.
Dijkstra
, “
Pushing the glass transition towards random close packing using self-propelled hard spheres
,”
Nat. Commun.
4
,
2704
(
2013
).
9.
R.
Ni
,
M. A. C.
Stuart
,
M.
Dijkstra
, and
P. G.
Bolhuis
, “
Crystallizing hard-sphere glasses by doping with active particles
,”
Soft Matter
10
,
6609
6613
(
2014
).
10.
F.
Kümmel
,
P.
Shabestari
,
C.
Lozano
,
G.
Volpe
, and
C.
Bechinger
, “
Formation, compression and surface melting of colloidal clusters by active particles
,”
Soft Matter
11
,
6187
6191
(
2015
).
11.
J.
Stenhammar
,
R.
Wittkowski
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Activity-induced phase separation and self-assembly in mixtures of active and passive particles
,”
Phys. Rev. Lett.
114
,
018301
(
2015
).
12.
R.
Wittkowski
,
J.
Stenhammar
, and
M. E.
Cates
, “
Nonequilibrium dynamics of mixtures of active and passive colloidal particles
,”
New J. Phys.
19
,
105003
(
2017
).
13.
A.
Wysocki
,
R. G.
Winkler
, and
G.
Gompper
, “
Propagating interfaces in mixtures of active and passive Brownian particles
,”
New J. Phys.
18
,
123030
(
2016
).
14.
P.
Dolai
,
A.
Simha
, and
S.
Mishra
, “
Phase separation in binary mixtures of active and passive particles
,”
Soft Matter
14
,
6137
(
2018
).
15.
D. P.
Singh
,
U.
Choudhury
,
P.
Fischer
, and
A. G.
Mark
, “
Non-equilibrium assembly of light-activated colloidal mixtures
,”
Adv. Mater.
29
,
1701328
(
2017
).
16.
L.
Wang
,
M. N.
Popescu
,
F.
Stavale
,
A.
Ali
,
T.
Gemming
, and
J.
Simmchen
, “
Cu@Tio2 Janus microswimmers with a versatile motion mechanism
,”
Soft Matter
14
,
6969
(
2018
).
17.
L.
Wang
and
J.
Simmchen
, “
Interactions of active colloids with passive tracers
,”
Condens. Matter
4
,
78
(
2019
).
18.
M. E.
Ibele
,
P. E.
Lammert
,
V. H.
Crespi
, and
A.
Sen
, “
Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions
,”
ACS Nano
4
,
4845
4851
(
2010
).
19.
X.
Wang
,
L.
Baraban
,
V. R.
Misko
,
F.
Nori
,
T.
Huang
,
G.
Cuniberti
,
J.
Fassbender
, and
D.
Makarov
, “
Visible light actuated efficient exclusion between plasmonic Ag/AgCl micromotors and passive beads
,”
Small
14
,
1802537
(
2018
).
20.
H.
Löwen
, “
Active colloidal molecules
,”
Europhys. Lett.
121
,
58001
(
2018
).
21.
S.
Ebbens
, “
Active colloids: Progress and challenges towards realising autonomous applications
,”
Curr. Opin. Colloid Interface Sci.
21
,
14
23
(
2016
).
22.
S. A.
Mallory
,
C.
Valeriani
, and
A.
Cacciuto
, “
An active approach to colloidal self-assembly
,”
Annu. Rev. Phys. Chem.
69
,
59
79
(
2018
).
23.
R.
Soto
and
R.
Golestanian
, “
Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry
,”
Phys. Rev. Lett.
112
,
068301
(
2014
).
24.
R.
Soto
and
R.
Golestanian
, “
Self-assembly of active colloidal molecules with dynamic function
,”
Phys. Rev. E
91
,
052304
(
2015
).
25.
R.
Niu
,
D.
Botin
,
J.
Weber
,
A.
Reinmüller
, and
T.
Palberg
, “
Assembly and speed in ion-exchange-based modular phoretic microswimmers
,”
Langmuir
33
,
3450
3457
(
2017
).
26.
F.
Schmidt
,
B.
Liebchen
,
H.
Löwen
, and
G.
Volpe
, “
Light-controlled assembly of active colloidal molecules
,”
J. Chem. Phys.
150
,
094905
(
2019
).
27.
M.
Cheng
,
G.
Ju
,
Y.
Zhang
,
M.
Song
,
Y.
Zhang
, and
F.
Shi
, “
Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy
,”
Small
10
,
3907
3911
(
2014
).
28.
W.
Wang
,
W.
Duan
,
A.
Sen
, and
T. E.
Mallouk
, “
Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
17744
17749
(
2013
).
29.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
A.
Sen
, and
T. E.
Mallouk
, “
From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors
,”
Acc. Chem. Res.
48
,
1938
1946
(
2015
).
30.
Y.
Gao
,
F.
Mou
,
Y.
Feng
,
S.
Che
,
W.
Li
,
L.
Xu
, and
J.
Guan
, “
Dynamic colloidal molecules maneuvered by light-controlled Janus micromotors
,”
ACS Appl. Mater. Interfaces
9
,
22704
22712
(
2017
).
31.
S.
Ni
,
E.
Marini
,
I.
Buttinoni
,
H.
Wolf
, and
L.
Isa
, “
Hybrid colloidal microswimmers through sequential capillary assembly
,”
Soft Matter
13
,
4252
4259
(
2017
).
32.
G.
Rückner
and
R.
Kapral
, “
Chemically powered nanodimers
,”
Phys. Rev. Lett.
98
,
150603
(
2007
).
33.
R.
Niu
,
T.
Palberg
, and
T.
Speck
, “
Self-assembly of colloidal molecules due to self-generated flow
,”
Phys. Rev. Lett.
119
,
028001
(
2017
).
34.
J.
Stürmer
,
M.
Seyrich
, and
H.
Stark
, “
Chemotaxis in a binary mixture of active and passive particles
,”
J. Chem. Phys.
150
,
214901
(
2019
).
35.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
(
1989
).
36.
S.
Saha
,
R.
Golestanian
, and
S.
Ramaswamy
, “
Clusters, asters, and collective oscillations in chemotactic colloids
,”
Phys. Rev. E
89
,
062316
(
2014
).
37.
O.
Pohl
and
H.
Stark
, “
Dynamic clustering and chemotactic collapse of self-phoretic active particles
,”
Phys. Rev. Lett.
112
,
238303
(
2014
).
38.
B.
Liebchen
,
D.
Marenduzzo
,
I.
Pagonabarraga
, and
M. E.
Cates
, “
Clustering and pattern formation in chemorepulsive active colloids
,”
Phys. Rev. Lett.
115
,
258301
(
2015
).
39.
B.
Liebchen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Phoretic interactions generically induce dynamic clusters and wave patterns in active colloids
,”
Phys. Rev. Lett.
118
,
268001
(
2017
).
40.
M.-J.
Huang
,
J.
Schofield
, and
R.
Kapral
, “
Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors
,”
New J. Phys.
19
,
125003
(
2017
).
41.
H.
Stark
, “
Artificial chemotaxis of self-phoretic active colloids: Collective behavior
,”
Acc. Chem. Res.
51
,
2681
(
2018
).
42.
B.
Liebchen
and
H.
Löwen
, “
Synthetic chemotaxis and collective behavior in active matter
,”
Acc. Chem. Res.
51
,
2982
(
2018
).
43.
B.
Robertson
,
M.-J.
Huang
,
J.-X.
Chen
, and
R.
Kapral
, “
Synthetic nanomotors: Working together through chemistry
,”
Acc. Chem. Res.
51
,
2355
(
2018
).
44.
J.
Agudo-Canalejo
and
R.
Golestanian
, “
Active phase separation in mixtures of chemically-interacting particles
,”
Phys. Rev. Lett.
123
,
018101
(
2019
).
45.
J.
Grauer
,
H.
Löwen
,
A.
Be’er
, and
B.
Liebchen
, eprint arXiv:1909.13805 (
2019
).
46.
B.
Liebchen
and
H.
Löwen
, “
Which interactions dominate in active colloids?
,”
J. Chem. Phys.
150
,
061102
(
2019
).
47.
A. I.
Campbell
,
S. J.
Ebbens
,
P.
Illien
, and
R.
Golestanian
, “
Experimental observation of flow fields around active Janus spheres
,”
Nat. Commun.
10
,
1
8
(
2019
).
48.

The recently developed AAA model46 could be used as an alternative to the present model, after extending it to account for the anisotropy in the chemical production as necessary to model the velocity-reversals; however, it does not admit to explore delay-effects due to the noninstantaneous chemical relaxation, which can be important for the case of repulsive phoretic interactions38,39 and which we study here for active-passive mixtures.

49.
D.
Chandler
and
J. D.
Weeks
, “
Equilibrium structure of simple liquids
,”
Phys. Rev. Lett.
25
,
149
152
(
1970
).
50.

We alternatingly iterate the particle positions and the chemical field by one step, using time step size ranging from Δt = 2.5 × 10−7 to Δt = 2 × 10−6 depending on the specific simulation. For the finite difference grid, we chose a spacing of Δx=29d.

51.
A. V.
Ivlev
,
J.
Bartnick
,
M.
Heinen
,
C.-R.
Du
,
V.
Nosenko
, and
H.
Löwen
, “
Statistical mechanics where Newton’s third law is broken
,”
Phys. Rev. X
5
,
011035
(
2015
).
52.
P.
Chattopadhyay
and
J.
Simmchen
, “
Interactions of different Janus particles with passive tracers
,” e-print chemrXiv:9391925.v1 (
2019
).
53.
B.
Liebchen
and
H.
Löwen
, “
Modelling chemotaxis of microswimmers: From individual to collective behavior
,” in
Chemical Kinetics Beyond the Textbook: Fluctuations, Many-Particle Effects and Anomalous Dynamics
, edited by
K.
Lindenberg
,
G.
Oshanin
, and
T.
Masanori
(
World Scientific
,
2018
).

Supplementary Material

You do not currently have access to this content.