Lithium-sulfur batteries show remarkable potential for energy storage applications due to their high-specific capacity and the low cost of active materials, especially sulfur. However, whereas there is a consensus about the use of lithium metal as the negative electrode, there is not a clear and widely accepted architectural design for the positive electrode of sulfur batteries. The difficulties arise when trying to find a balance between high-surface-area architectures and practical utilization of the sulfur content. Intensive understanding of the interfacial mechanisms becomes then crucial to design optimized carbon-hosted sulfur architectures with enhanced electrochemical performance. In this work, we use density functional theory (DFT)-based first principles calculations to describe and characterize the growing mechanisms of Li2S active material on graphene, taken as an example of a nonencapsulated carbon host for the positive electrode of Li-S batteries. We first unravel the two growing mechanisms of Li2S supported nanostructures, which explain recent experimental findings on real-time monitoring of interfacial deposition of lithium sulfides during discharge, obtained by means of in situ atomic force microscopy. Then, using a combination of mathematical tools and DFT calculations, we obtain the first cycle voltage plot, explaining the three different regions observed that ultimately lead to the formation of high-order polysulfides upon charge. Finally, we show how the different Li2S supported nanostructures can be characterized in X-ray photoelectron spectroscopy measurements. Altogether, this work provides useful insights for the rational design of new carbon-hosted sulfur architectures with optimized characteristics for the positive electrode of lithium-sulfur batteries.

1.
P. G.
Bruce
,
S. A.
Freunberger
,
L. J.
Hardwick
, and
J.-M.
Tarascon
, “
Li-O2 and Li-S batteries with high energy storage
,”
Nat. Mater.
11
,
19
29
(
2012
).
2.
X.
Ji
,
K. T.
Lee
, and
L. F.
Nazar
, “
A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
,”
Nat. Mater.
8
,
500
506
(
2009
).
3.
A.
Manthiram
,
S.-H.
Chung
, and
C.
Zu
, “
Lithium-sulfur batteries: Progress and prospects
,”
Adv. Mater.
27
,
1980
2006
(
2015
).
4.
Y.
Yang
,
G.
Zheng
,
S.
Misra
,
J.
Nelson
,
M. F.
Toney
, and
Y.
Cui
, “
High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries
,”
J. Am. Chem. Soc.
134
,
15387
15394
(
2012
).
5.
S.
Meini
,
R.
Elazari
,
A.
Rosenman
,
A.
Garsuch
, and
D.
Aurbach
, “
The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems
,”
J. Phys. Chem. Lett.
5
,
915
918
(
2014
).
6.
Y. V.
Mikhaylik
and
J. R.
Akridge
, “
Polysulfide shuttle study in the Li/S battery system
,”
J. Electrochem. Soc.
151
,
A1969
A1976
(
2004
).
7.
D.
Aurbach
,
E.
Pollak
,
R.
Elazari
,
G.
Salitra
,
C. S.
Kelley
, and
J.
Affinito
, “
On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries
,”
J. Electrochem. Soc.
156
,
A694
A702
(
2009
).
8.
W.
Weng
,
V. G.
Pol
, and
K.
Amine
, “
Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries
,”
Adv. Mater.
25
,
1608
1615
(
2013
).
9.
L. E.
Camacho-Forero
,
T. W.
Smith
,
S.
Bertolini
, and
P. B.
Balbuena
, “
Reactivity at the lithium-metal anode surface of lithium-sulfur batteries
,”
J. Phys. Chem. C
119
,
26828
26839
(
2015
).
10.
J.
Scheers
,
S.
Fantini
, and
P.
Johansson
, “
A review of electrolytes for lithium-sulphur batteries
,”
J. Power Sources
255
,
204
218
(
2014
).
11.
J.
Tan
,
D.
Liu
,
X.
Xu
, and
L.
Mai
, “
In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: A review
,”
Nanoscale
9
,
19001
19016
(
2017
).
12.
X.
Yu
and
A.
Manthiram
, “
Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes
,”
Acc. Chem. Res.
50
,
2653
2660
(
2017
).
13.
W. Y.
Li
,
H. B.
Yao
,
K.
Yan
,
G. Y.
Zheng
,
Z.
Liang
,
Y. M.
Chiang
, and
Y.
Cui
, “
The synergistic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
,”
Nat. Commun.
6
,
7436
(
2015
).
14.
Y. Y.
Lu
,
Z. Y.
Tu
, and
L. A.
Archer
, “
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
,”
Nat. Mater.
13
,
961
969
(
2014
).
15.
L. E.
Camacho-Forero
,
T. W.
Smith
, and
P. B.
Balbuena
, “
Effects of high and low salt concentration in electrolytes at lithium-metal anode surfaces
,”
J. Phys. Chem. C
121
,
182
194
(
2017
).
16.
H.
Pan
,
J.
Chen
,
R.
Cao
,
V.
Murugesan
,
N. N.
Rajput
,
K. S.
Han
,
K.
Persson
,
L.
Estevez
,
M. H.
Engelhard
,
J.-G.
Zhang
,
K. T.
Mueller
,
Y.
Cui
,
Y.
Shao
, and
J.
Liu
, “
Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth
,”
Nat. Energy
2
,
813
820
(
2017
).
17.
G.
Zheng
,
Y.
Yang
,
J. J.
Cha
,
S. S.
Hong
, and
Y.
Cui
, “
Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
,”
Nano Lett.
11
,
4462
4467
(
2011
).
18.
G.
Zhou
,
S.
Pei
,
L.
Li
,
D. W.
Wang
,
S.
Wang
,
K.
Huang
,
L. C.
Yin
,
F.
Li
, and
H. M.
Cheng
, “
A graphene-pure sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries
,”
Adv. Mater.
26
,
625
631
(
2014
).
19.
Z. W.
She
,
W.
Li
,
J. J.
Cha
,
G.
Zheng
,
Y.
Yang
,
M. T.
McDowell
,
P.-C.
Hsu
, and
Y.
Cui
, “
Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries
,”
Nat. Commun.
4
,
1331
(
2013
).
20.
L.
Xiao
,
Y.
Cao
,
J.
Xiao
,
B.
Schwenzer
,
M. H.
Engelhard
,
L. V.
Saraf
,
Z.
Nie
,
G. J.
Exarhos
, and
J.
Liu
, “
A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life
,”
Adv. Mater.
24
,
1176
1181
(
2012
).
21.
J.
Song
,
Z.
Yu
,
M. L.
Gordin
, and
D.
Wang
, “
Advanced sulfur cathode enabled by highly crumped nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries
,”
Nano Lett.
16
,
864
870
(
2016
).
22.
S.-Y.
Lang
,
R.-J.
Xiao
,
L.
Gu
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics
,”
J. Am. Chem. Soc.
140
,
8147
8155
(
2018
).
23.
S.-Y.
Lang
,
Y.
Shi
,
Y.-G.
Guo
,
D.
Wang
,
R.
Wen
, and
L.-J.
Wan
, “
Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study
,”
Angew. Chem., Int. Ed.
55
,
15835
15839
(
2016
).
24.
S.-Y.
Lang
,
Y.
Shi
,
Y.-G.
Guo
,
R.
Wen
, and
L.-J.
Wan
, “
High-temperature formation of a functional film at the cathode/electrolyte interface in lithium-sulfur batteries: An in situ AFM study
,”
Angew. Chem., Int. Ed.
56
,
14433
14437
(
2017
).
25.
Y.
Jing
and
Z.
Zhou
, “
Computational insights into oxygen reduction reaction and initial Li2O2 nucleation on pristine and N-doped graphene in Li-O2 batteries
,”
ACS Catal.
5
,
4309
4317
(
2015
).
26.
K.
Zhang
,
L.
Wang
,
Z.
Hu
,
F.
Cheng
, and
J.
Chen
, “
Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries
,”
Sci. Rep.
4
,
6467
(
2014
).
27.
G.
Kresse
and
J.
Fürthmuller
, “
Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
28.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition-metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
30.
P.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
31.
H. K.
Monkhorst
and
J. D.
Pack
, “
Special points for brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
5192
(
1976
).
32.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
33.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
).
34.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
35.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
Climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
36.
C.
Wolverton
and
D.
de Fontaine
, “
Cluster expansions of alloy energetics in ternary intermetallics
,”
Phys. Rev. B
49
,
8627
8642
(
1994
).
37.
D.
Lerch
,
O.
Wieckhorst
,
G. L. W.
Hart
,
R. W.
Forcade
, and
S.
Muller
, “
A code for constructing cluster expansions for arbitrary lattices with minimal user-input
,”
Modell. Simul. Mater. Sci. Eng.
17
,
055003
(
2009
).
38.
E.
Lee
and
K. A.
Persson
, “
Structural and chemical evolution of the layered Li-excess LixMnO3 as a function of Li content from first-principles calculations
,”
Adv. Energy Mater.
4
,
1400498
(
2014
).
39.
R. C.
Longo
,
C.
Liang
,
F.
Kong
, and
K.
Cho
, “
Core-shell nanocomposites for improving the structural stability of Li-rich layered oxide cathode materials for Li-ion batteries
,”
ACS Appl. Mater. Interfaces
10
,
19226
19234
(
2018
).
40.
C.
Gougossis
,
M.
Calandra
,
A. P.
Seitsonen
, and
F.
Mauri
, “
First principles calculations of x-ray adsorption in an ultrasoft pseudopotentials scheme: From σ–quartz to high-Tc compounds
,”
Phys. Rev. B
80
,
075102
(
2009
).
41.
P.
Gianozzi
,
O.
Andreussi
 et al., “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
42.
P.
Gianozzi
,
S.
Baroni
 et al., “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
43.
M.
Acik
,
G.
Lee
,
C.
Mattevi
,
M.
Chhowalla
,
K.
Cho
, and
Y. J.
Chabal
, “
Unusual infrared-adsorption mechanism in thermally reduced graphene oxide
,”
Nat. Mater.
9
,
840
845
(
2010
).
44.
R. C.
Longo
,
J.
Carrete
, and
L. J.
Gallego
, “
Ab initio study of 3d, 4d, and 5d transition metal adatoms and dimers adsorbed on hydrogen-passivated zigzag graphene nanoribbons
,”
Phys. Rev. B
83
,
235415
(
2011
).
45.
X.
Fan
,
W. T.
Zheng
,
J.-L.
Kuo
, and
D. J.
Singh
, “
Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries
,”
ACS Appl. Mater. Interfaces
5
,
7793
7797
(
2013
).
46.
Y.-H.
Tian
,
S.
Hu
,
X.
Sheng
,
Y.
Duan
,
J.
Jakowski
,
B. G.
Sumpter
, and
J.
Huang
, “
Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped graphene
,”
J. Phys. Chem. Lett.
9
,
570
576
(
2018
).
47.
A. R.
Botello-Méndez
,
S. M.-M.
Dubois
,
A.
Lherbier
, and
J.-C.
Charlier
, “
Achievements of DFT for the investigation of graphene-related nanostructures
,”
Acc. Chem. Res.
47
,
3292
3300
(
2014
).
48.
X.-Q.
Shu
,
H.
Zhang
,
X.-L.
Cheng
, and
Y.
Miyamoto
, “
Tunable plasmons in few-layer nitrogen-doped graphene nanostructures: A time-dependent density functional theory study
,”
Phys. Rev. B
93
,
195424
(
2016
).
49.
Y.
Nie
,
S.
Hong
,
R. M.
Wallace
, and
K.
Cho
, “
Theoretical demonstration of the ionic barristor
,”
Nano Lett.
16
,
2090
2095
(
2016
).
50.
C.
Chen
,
J.
Zhang
,
B.
Zhang
, and
H. M.
Duan
, “
Hydrogen adsorption of Mg-doped graphene oxide: A first-principles study
,”
J. Phys. Chem. C
117
,
4337
4344
(
2013
).
51.
M.
Liu
,
A.
Kutana
,
Y.
Liu
, and
B. I.
Yakobson
, “
First-principles studies of Li nucleation on graphene
,”
J. Phys. Chem. Lett.
5
,
1225
1229
(
2014
).
52.
Q.
Pang
,
D.
Kundu
,
M.
Cuisiner
, and
L. F.
Nazar
, “
Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
,”
Nat. Commun.
5
,
4759
(
2014
).
53.
Q.
Fan
,
W.
Liu
,
Z.
Weng
,
Y.
Sun
, and
H.
Wang
, “
Ternary hybrid material for high-performance lithium-sulfur battery
,”
J. Am. Chem. Soc.
137
,
12946
12953
(
2015
).
54.
D. R.
Stull
and
H.
Prophet
,
JANAF Thermochemical Tables
, 2nd ed. (
National Institute of Standards and Technology
,
1971
).
55.
J. S.
Hummelshøj
,
J.
Blomqvist
,
S.
Datta
,
T.
Vegge
,
J.
Rossmeisl
,
K. S.
Thygesen
,
A. C.
Luntz
,
K. W.
Jacobsen
, and
J. K.
Nørskov
, “
Elementary oxygen electrode reactions in the aprotic Li-air battery
,”
J. Chem. Phys.
132
,
071101
(
2010
).
56.
M.
Klintenberg
,
S.
Lebègue
,
M. I.
Katsnelson
, and
O.
Eriksson
, “
Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with group IA and group VIIA elements
,”
Phys. Rev. B
81
,
085433
(
2010
).
57.
D.-W.
Wang
,
Q.
Zeng
,
G.
Zhou
,
L.
Yin
,
F.
Li
,
H.-M.
Cheng
,
I. R.
Gentle
, and
G. Q. M.
Lu
, “
Carbon-sulfur composites for Li-S batteries: Status and prospects
,”
J. Mater. Chem. A
1
,
9382
9394
(
2013
).
58.
E.
Lee
and
K. A.
Persson
, “
First-principles study of the nano-scaling effect on the electrochemical behavior in LiNi0.5Mn1.5O4
,”
Nanotechnology
24
,
424007
(
2013
).
59.
Z.
Liu
,
H.
Deng
,
W.
Hu
,
F.
Gao
,
S.
Zhang
,
P. B.
Balbuena
, and
P. P.
Mukherjee
, “
Revealing reaction mechanisms of nanoconfined Li2S: Implications for lithium-sulfur batteries
,”
Phys. Chem. Chem. Phys.
20
,
11713
11721
(
2018
).
60.
M.
Vijaykumar
,
N.
Govind
,
E.
Walter
,
S. D.
Burton
,
A.
Shukla
,
A.
Devaraj
,
J.
Xiao
,
J.
Liu
,
C.
Wang
,
A.
Karim
, and
S.
Thevuthasan
, “
Molecular structure and stability of dissolved lithium polysulfide species
,”
Phys. Chem. Chem. Phys.
16
,
10923
10932
(
2014
).
61.
X.
Meng
,
D. J.
Comstock
,
T. T.
Fister
, and
J. W.
Elam
, “
Vapor-phase atomic controllable growth of amorphous Li2S for high-performance lithium-sulfur batteries
,”
ACS Nano
8
,
10963
(
2014
).
62.
T. A.
Pascal
,
U.
Boesenberg
,
R.
Kostecki
,
T. J.
Richardson
,
T.-C.
Weng
,
D.
Sokaras
,
D.
Nordlund
,
E.
McDermott
,
A.
Moewes
,
J.
Cabana
, and
D.
Prendergast
, “
Finite temperature effects on the x-ray adsorption spectra of lithium compounds: First-principles interpretation of x-ray Raman measurements
,”
J. Chem. Phys.
140
,
034107
(
2014
).

Supplementary Material

You do not currently have access to this content.