Semiconducting nanocrystals have been the subject of intense research due to the ability to modulate the electronic and magnetic properties by controlling the size of the crystal, introducing dopants, and surface modification. While relatively simple models such as a particle in a sphere can work well to describe moderately sized quantum dots, this approximation becomes less accurate for very small nanocrystals that are strongly confined. In this work, we report all-electron, relativistic ab initio electronic structure calculations for a series of ZnO quantum dots in order to study the modulation of the Rashba effect. The impact and magnitude of spin-orbit coupling and crystalline anisotropy on the fine structure of the band-edge excitonic manifold are discussed.

1.
R.
Beaulac
,
S. T.
Ochsenbein
, and
D. R.
Gamelin
, in
Semiconductor Quantum Dots
, 2nd ed., edited by
V. I.
Klimov
(
CRC Press
,
Boca Raton
,
2010
), p.
397
.
2.
G.
Armelles
,
A.
Cebollada
,
A.
García-Martín
, and
M. U.
González
, “
Magnetoplasmonics: Combining magnetic and plasmonic functionalities
,”
Adv. Opt. Mater.
1
,
10
35
(
2013
).
3.
M. A.
Becker
,
R.
Vaxenburg
,
G.
Nedelcu
,
P. C.
Sercel
,
A.
Shabaev
,
M. J.
Mehl
,
J. G.
Michopoulos
,
S. G.
Lambrakos
,
N.
Bernstein
,
J. L.
Lyons
,
T.
Stöferle
,
R. F.
Marht
,
M. V.
Kovalenko
,
D. J.
Norris
,
G.
Rainó
, and
A. L.
Efros
, “
Bright triplet excitons in caesium lead halide perovskites
,”
Nature
553
,
189
(
2018
).
4.
L.-W.
Wang
and
J.
Li
, “
First-principles thousand-atom quantum dot calculations
,”
Phys. Rev. B
69
,
153302
(
2004
).
5.
E.
Badaeva
,
J. W.
May
,
J.
Ma
,
D. R.
Gamelin
, and
X.
Li
, “
Characterization of excited-state magnetic exchange in Mn2+-doped ZnO quantum dots using time-dependent density functional theory
,”
J. Phys. Chem. C
115
,
20986
20991
(
2011
).
6.
J. J.
Goings
,
A. M.
Schimpf
,
J. W.
May
,
R. W.
Johns
,
D. R.
Gamelin
, and
X.
Li
, “
Theoretical characterization of conduction-band electrons in photodoped and aluminum-doped zinc oxide (AZO) quantum dots
,”
J. Phys. Chem. C
118
,
26584
26590
(
2014
).
7.
H. D.
Nelson
,
X.
Li
, and
D. R.
Gamelin
, “
Computational studies of the electronic structures of copper-doped CdSe nanocrystals: Oxidation states, Jahn–Teller distortions, vibronic bandshapes, and singlet–triplet splittings
,”
J. Phys. Chem. C
120
,
5714
5723
(
2016
).
8.
H.
Liu
,
C. K.
Brozek
,
S.
Sun
,
D. B.
Lingerfelt
,
D. R.
Gamelin
, and
X.
Li
, “
A hybrid quantum-classical model of electrostatics in multiply charged quantum dots
,”
J. Phys. Chem. C
121
,
26086
26095
(
2017
).
9.
M.
Walter
,
J.
Akola
,
O.
Lopez-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
, “
A unified view of ligand-protected gold clusters as superatom complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
9157
9162
(
2008
).
10.
J.
Akola
,
M.
Walter
,
R. L.
Whetten
,
H.
Häkkinen
, and
H.
Grönbeck
, “
On the structure of thiolate-protected Au25
,”
J. Am. Chem. Soc.
130
,
3756
3757
(
2008
).
11.
D.-e.
Jiang
,
M.
Kühn
,
Q.
Tang
, and
F.
Weigend
, “
Superatomic orbitals under spin–orbit coupling
,”
J. Phys. Chem. Lett.
5
,
3286
3289
(
2014
).
12.
K.
Nash
,
P.
Calcott
,
L.
Canham
, and
R.
Needs
, “
Spin-orbit interaction, triplet lifetime, and fine-structure splitting of excitons in highly porous silicon
,”
Phys. Rev. B
51
,
17698
(
1995
).
13.
J.
Fu
and
M.
Wu
, “
Spin-orbit coupling in bulk ZnO and GaN
,”
J. Appl. Phys.
104
,
093712
(
2008
).
14.
P. C.
Sercel
and
A. L.
Efros
, “
Band-edge exciton in CdSe and other II–VI and III–V compound semiconductor nanocrystals-revisited
,”
Nano Lett.
18
,
4061
4068
(
2018
).
15.
A.
Manchon
,
H. C.
Koo
,
J.
Nitta
,
S.
Frolov
, and
R.
Duine
, “
New perspectives for Rashba spin-orbit coupling
,”
Nat. Mater.
14
,
871
(
2015
).
16.
F. S.
Ham
, “
Effect of linear Jahn-Teller coupling on paramagnetic resonance in a 2E state
,”
Phys. Rev.
166
,
307
(
1968
).
17.
L. A.
Brus
, “
Simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites
,”
J. Chem. Phys.
79
,
5566
5571
(
1983
).
18.
L. E.
Brus
, “
Electron electron and elctron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic states
,”
J. Chem. Phys.
80
,
4403
4409
(
1984
).
19.
G.-H.
Chen
and
M.
Raikh
, “
Exchange-induced enhancement of spin-orbit coupling in two-dimensional electronic systems
,”
Phys. Rev. B
60
,
4826
(
1999
).
20.
R.
Li
,
Z.-H.
Liu
,
Y.
Wu
, and
C.
Liu
, “
The impacts of the quantum-dot confining potential on the spin-orbit effect
,”
Sci. Rep.
8
,
7400
(
2018
).
21.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
22.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
, 2nd ed. (
Wiley-VCH
,
2015
).
23.
W.
Kutzlenigg
and
W.
Liu
, “
Quasirelativistic theory equivalent to fully relativistic theory
,”
J. Chem. Phys.
123
,
241102
(
2005
).
24.
W.
Liu
and
D.
Peng
, “
Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory
,”
J. Chem. Phys.
125
,
044102
(
2006
).
25.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
, “
Making four-and two-component relativistic density functional methods fully equivalent based on the idea of from atoms to molecule
,”
J. Chem. Phys.
127
,
104106
(
2007
).
26.
M.
Ilias
and
T.
Saue
, “
An infinite-order relativistic Hamiltonian by a simple one-step transformation
,”
J. Chem. Phys.
126
,
064102
(
2007
).
27.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
28.
W.
Liu
, “
Ideas of relativistic quantum chemistry
,”
Mol. Phys.
108
,
1679
1706
(
2010
).
29.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
ChemPhysChem
12
,
3077
3094
(
2011
).
30.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
, “
On the spin separation of algebraic two-component relativistic Hamiltonians
,”
J. Chem. Phys.
137
,
154114
(
2012
).
31.
D.
Peng
,
N.
Middendorf
,
F.
Weigend
, and
M.
Reiher
, “
An efficient implementation of two-component relativistic exact-decoupling methods for large molecules
,”
J. Chem. Phys.
138
,
184105
(
2013
).
32.
F.
Egidi
,
J. J.
Goings
,
M. J.
Frisch
, and
X.
Li
, “
Direct atomic-orbital-based relativistic two-component linear response method for calculating excited-state fine structures
,”
J. Chem. Theory Comput.
12
,
3711
3718
(
2016
).
33.
J. J.
Goings
,
J. M.
Kasper
,
F.
Egidi
,
S.
Sun
, and
X.
Li
, “
Real time propagation of the exact two component time-dependent density functional theory
,”
J. Chem. Phys.
145
,
104107
(
2016
).
34.
L.
Konecny
,
M.
Kadek
,
S.
Komorovsky
,
O. L.
Malkina
,
K.
Ruud
, and
M.
Repisky
, “
Acceleration of relativistic electron dynamics by means of X2C transformation: Application to the calculation of nonlinear optical properties
,”
J. Chem. Theory Comput.
12
,
5823
5833
(
2016
).
35.
F.
Egidi
,
S.
Sun
,
J. J.
Goings
,
G.
Scalmani
,
M. J.
Frisch
, and
X.
Li
, “
Two-component non-collinear time-dependent spin density functional theory for excited state calculations
,”
J. Chem. Theory Comput.
13
,
2591
2603
(
2017
).
36.
J. E.
Peralta
,
G. E.
Scuseria
, and
M. J.
Frisch
, “
Noncollinear magnetism in density functional calculations
,”
Phys. Rev. B
75
,
125119
(
2007
).
37.
G.
Scalmani
and
M. J.
Frisch
, “
A new approach to noncollinear spin density functional theory beyond the local density approximation
,”
J. Chem. Theory Comput.
8
,
2193
2196
(
2012
).
38.
I. W.
Bulik
,
G.
Scalmani
,
M. J.
Frisch
, and
G. E.
Scuseria
, “
Noncollinear density functional theory having proper invariance and local torque properties
,”
Phys. Rev. B
87
,
035117
(
2013
).
39.
A.
Petrone
,
D. B.
Williams-Young
,
S.
Sun
,
T. F.
Stetina
, and
X.
Li
, “
An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables
,”
Eur. Phys. J. B
91
,
169
(
2018
).
40.
J. C.
Boettger
, “
Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations using the Douglas-Kroll-Hess transformation
,”
Phys. Rev. B
62
,
7809
7815
(
2000
).
41.
E.
Badaeva
,
Y.
Feng
,
D. R.
Gamelin
, and
X.
Li
, “
Investigation of pure and Co2+-doped ZnO quantum dot electronic structures using the density functional theory: Choosing the right functional
,”
New J. Phys.
10
,
055013
(
2008
).
42.
E.
Badaeva
,
C. M.
Isborn
,
Y.
Feng
,
S. T.
Ochsenbein
,
D. R.
Gamelin
, and
X.
Li
, “
Theoretical characterization of electronic transitions in Co2+- and Mn2+-doped ZnO nanocrystals
,”
J. Phys. Chem. C
113
,
8710
8717
(
2009
).
43.
Y.
Feng
,
E.
Badaeva
,
D. R.
Gamelin
, and
X.
Li
, “
Excited-state double exchange in manganese-doped ZnO quantum dots: A time-dependent density-functional study
,”
J. Phys. Chem. Lett.
1
,
1927
1931
(
2010
).
44.
J. W.
May
,
J.
Ma
,
E.
Badaeva
, and
X.
Li
, “
Effect of excited-state structural relaxation on midgap excitations in Co2+-doped ZnO quantum dots
,”
J. Phys. Chem. C
118
,
13152
13156
(
2014
).
45.
S. A.
Fischer
,
D. B.
Lingerfelt
,
J. W.
May
, and
X.
Li
, “
Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn2+-doped ZnO quantum dots
,”
Phys. Chem. Chem. Phys.
16
,
17507
17514
(
2014
).
46.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian Development Version Revision I.11+,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
47.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
48.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions
,”
J. Chem. Phys.
72
,
650
654
(
1980
).
49.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V. R.
Schleyer
, “
Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements Li–F
,”
J. Comput. Chem.
4
,
294
301
(
1983
).
50.
F.
Kyrychenko
and
J.
Kossut
, “
Diluted magnetic semiconductor quantum dots: An extreme sensitivity of the hole Zeeman splitting on the aspect ratio of the confining potential
,”
Phys. Rev. B
70
,
205317
(
2004
).
51.
J.-W.
Wang
and
S.-S.
Li
, “
Excitonic bright-to-dark transition induced by spin-orbit coupling
,”
Appl. Phys. Lett.
92
,
012106
(
2008
).
52.
N.
Ashkenov
,
B.
Mbenkum
,
C.
Bundesmann
,
V.
Riede
,
M.
Lorenz
,
D.
Spemann
,
E.
Kaidashev
,
A.
Kasic
,
M.
Schubert
,
M.
Grundmann
,
G.
Wagner
,
H.
Neumann
,
V.
Darakchieva
,
H.
Arwin
, and
B.
Monemar
, “
Infrared dielectric functions and phonon modes of high-quality ZnO films
,”
J. Appl. Phys.
93
,
126
133
(
2003
).
53.
J. I.
Pankove
,
Optical Processes in Semiconductors
(
Dover
,
1975
).
54.
M.
Dvorak
,
S.-H.
Wei
, and
Z.
Wu
, “
Origin of the variation of exciton binding energy in semiconductors
,”
Phys. Rev. Lett.
110
,
016402
(
2013
).
55.
L.
Lew Yan Voon
,
R.
Melnik
,
B.
Lassen
, and
M.
Willatzen
, “
Influence of aspect ratio on the lowest states of quantum rods
,”
Nano Lett.
4
,
289
292
(
2004
).
56.
M.
Kuno
,
J.-K.
Lee
,
B. O.
Dabbousi
,
F. V.
Mikulec
, and
M. G.
Bawendi
, “
The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state
,”
J. Chem. Phys.
106
,
9869
9882
(
1997
).
You do not currently have access to this content.