Helium nanodroplets can serve as reaction containers for photoinduced time-resolved studies of cold, isolated molecular systems that are otherwise inaccessible. Recently, three different dynamical processes, triggered by photoexcitation of a single atom inside a droplet, were observed in their natural time scale: Expansion of the He solvation shell (He bubble) within 600 fs initiates a collective bubble oscillation with a ∼30 ps oscillation period, followed by dopant ejection after ∼60 ps. Here, we present a systematic investigation of these processes by combining time-resolved photoelectron and photoion spectroscopy with time-dependent He density functional theory simulations. By variation of the photoexcitation energy, we find that the full excess excitation energy, represented by the blue-shifted in-droplet excitation band, is completely transferred to the He environment during the bubble expansion. Surprisingly, we find that variation of the droplet size has only a minor influence on the ejection time, providing insight into the spatial distribution of the ground-state atoms before photoexcitation. Simulated particle trajectories after photoexcitation are in agreement with experimental observations and suggest that the majority of ground-state atoms are located at around 16 Å below the droplet surface. Bubble expansion and oscillation are purely local effects, depending only on the ultimate dopant environment. These solvation-induced dynamics will be superimposed on intramolecular dynamics of molecular systems, and a mechanistic description is fundamental for the interpretation of future experiments.

1.
J. P.
Toennies
and
A. F.
Vilesov
, “
Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes
,”
Angew. Chem., Int. Ed.
43
,
2622
2648
(
2004
).
2.
M. Y.
Choi
,
G. E.
Douberly
,
T. M.
Falconer
,
W. K.
Lewis
,
C. M.
Lindsay
,
J. M.
Merritt
,
P. L.
Stiles
, and
R. E.
Miller
, “
Infrared spectroscopy of helium nanodroplets: Novel methods for physics and chemistry
,”
Int. Rev. Phys. Chem.
25
,
15
75
(
2006
).
3.
F.
Stienkemeier
and
K. K.
Lehmann
, “
Spectroscopy and dynamics in helium nanodroplets
,”
J. Phys. B: At., Mol. Opt. Phys.
39
,
R127
(
2006
).
4.
C.
Callegari
and
W. E.
Ernst
, “
Helium droplets as nanocryostats for molecular spectroscopy—From the vacuum ultraviolet to the microwave regime
,” in
Handbook of High Resolution Spectroscopy
, edited by
F.
Merkt
and
M.
Quack
(
John Wiley & Sons
,
Chichester
,
2011
).
5.
D.
Verma
,
R. M. P.
Tanyag
,
S. M.
O’Connell
, and
A. F.
Vilesov
, “
Infrared spectroscopy in superfluid helium droplets
,”
Adv. Phys.: X
4
,
1553569
(
2019
).
6.
K.
Nauta
and
R. E.
Miller
, “
Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium
,”
Science
283
,
1895
1897
(
1999
).
7.
J.
Nagl
,
G.
Auböck
,
A. W.
Hauser
,
O.
Allard
,
C.
Callegari
, and
W. E.
Ernst
, “
Heteronuclear and homonuclear high-spin alkali trimers on helium nanodroplets
,”
Phys. Rev. Lett.
100
,
063001
(
2008
).
8.
J.
Küpper
and
J. M.
Merritt
, “
Spectroscopy of free radicals and radical containing entrance-channel complexes in superfluid helium nanodroplets
,”
Int. Rev. Phys. Chem.
26
,
249
287
(
2007
).
9.
K.
Nauta
and
R.
Miller
, “
Infrared spectroscopy and structures of Arn–HF in liquid helium nanodroplets
,”
J. Chem. Phys.
115
,
10138
10145
(
2001
).
10.
G.
Haberfehlner
,
P.
Thaler
,
D.
Knez
,
A.
Volk
,
F.
Hofer
,
W. E.
Ernst
, and
G.
Kothleitner
, “
Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography
,”
Nat. Commun.
6
,
8779
(
2015
).
11.
A.
Gutberlet
,
G.
Schwaab
,
Ö.
Birer
,
M.
Masia
,
A.
Kaczmarek
,
H.
Forbert
,
M.
Havenith
, and
D.
Marx
, “
Aggregation-induced dissociation of HCl (H2O)4 below 1 K: The smallest droplet of acid
,”
Science
324
,
1545
1548
(
2009
).
12.
D.
Mani
,
R. P.
de Tudela
,
R.
Schwan
,
N.
Pal
,
S.
Körning
,
H.
Forbert
,
B.
Redlich
,
A. F. G.
van der Meer
,
G.
Schwaab
,
D.
Marx
, and
M.
Havenith
, “
Acid solvation versus dissociation at “stardust conditions”: Reaction sequence matters
,”
Sci. Adv.
5
,
eaav8179
(
2019
).
13.
S.
Göde
,
R.
Irsig
,
J.
Tiggesbäumker
, and
K.
Meiwes-Broer
, “
Time-resolved studies on the collapse of magnesium atom foam in helium nanodroplets
,”
New J. Phys.
15
,
015026
(
2013
).
14.
M. P.
Ziemkiewicz
,
D. M.
Neumark
, and
O.
Gessner
, “
Ultrafast electronic dynamics in helium nanodroplets
,”
Int. Rev. Phys. Chem.
34
,
239
267
(
2015
).
15.
M.
Mudrich
and
F.
Stienkemeier
, “
Photoionisation of pure and doped helium nanodroplets
,”
Int. Rev. Phys. Chem.
33
,
301
339
(
2014
).
16.
J.
von Vangerow
,
F.
Coppens
,
A.
Leal
,
M.
Pi
,
M.
Barranco
,
N.
Halberstadt
,
F.
Stienkemeier
, and
M.
Mudrich
, “
Imaging excited-state dynamics of doped He nanodroplets in real-time
,”
J. Phys. Chem. Lett.
8
,
307
312
(
2017
).
17.
B.
Thaler
,
S.
Ranftl
,
P.
Heim
,
S.
Cesnik
,
L.
Treiber
,
R.
Meyer
,
A. W.
Hauser
,
W. E.
Ernst
, and
M.
Koch
, “
Femtosecond photoexcitation dynamics inside a quantum solvent
,”
Nat. Commun.
9
,
4006
(
2018
).
18.
N. V.
Dozmorov
,
A. V.
Baklanov
,
J.
von Vangerow
,
F.
Stienkemeier
,
J. A. M.
Fordyce
, and
M.
Mudrich
, “
Quantum dynamics of Rb atoms desorbing off the surface of He nanodroplets
,”
Phys. Rev. A
98
,
043403
(
2018
).
19.
L.
Bruder
,
U.
Bangert
,
M.
Binz
,
D.
Uhl
,
R.
Vexiau
,
N.
Bouloufa-Maafa
,
O.
Dulieu
, and
F.
Stienkemeier
, “
Coherent multidimensional spectroscopy of dilute gas-phase nanosystems
,”
Nat. Commun.
9
,
4823
(
2018
).
20.
B.
Shepperson
,
A. A.
Søndergaard
,
L.
Christiansen
,
J.
Kaczmarczyk
,
R. E.
Zillich
,
M.
Lemeshko
, and
H.
Stapelfeldt
, “
Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking free
,”
Phys. Rev. Lett.
118
,
203203
(
2017
).
21.
A. S.
Chatterley
,
C.
Schouder
,
L.
Christiansen
,
B.
Shepperson
,
M. H.
Rasmussen
, and
H.
Stapelfeldt
, “
Long-lasting field-free alignment of large molecules inside helium nanodroplets
,”
Nat. Commun.
10
,
133
(
2019
).
22.
A.
Stolow
,
A. E.
Bragg
, and
D. M.
Neumark
, “
Femtosecond time-resolved photoelectron spectroscopy
,”
Chem. Rev.
104
,
1719
1758
(
2004
).
23.
I.
Hertel
and
W.
Radloff
, “
Ultrafast dynamics in isolated molecules and molecular clusters
,”
Rep. Prog. Phys.
69
,
1897
(
2006
).
24.
O.
Kornilov
,
C. C.
Wang
,
O.
Bunermann
,
A. T.
Healy
,
M.
Leonard
,
C.
Peng
,
S. R.
Leone
,
D. M.
Neumark
, and
O.
Gessner
, “
Ultrafast dynamics in helium nanodroplets probed by femtosecond time-resolved EUV photoelectron imaging
,”
J. Phys. Chem. A
114
,
1437
1445
(
2009
).
25.
B.
Thaler
,
R.
Meyer
,
P.
Heim
,
S.
Ranftl
,
J. V.
Pototschnig
,
A. W.
Hauser
,
M.
Koch
, and
W. E.
Ernst
, “
Conservation of hot thermal spin-orbit population of 2P atoms in a cold quantum fluid environment
,”
J. Phys. Chem. A
123
,
3977
3984
(
2019
).
26.
M.
Mudrich
,
A.
LaForge
,
F.
Stienkemeier
,
A.
Ciavardini
,
P.
O’Keeffe
,
M.
Coreno
,
Y.
Ovcharenko
,
T.
Moeller
,
M.
Ziemkiewicz
,
M.
Devetta
 et al, “
Ultrafast relaxation of photoexcited superfluid He nanodroplets
,” preprint arXiv:1905.04489 (
2019
).
27.
J.
Harms
,
J. P.
Toennies
, and
F.
Dalfovo
, “
Density of superfluid helium droplets
,”
Phys. Rev. B
58
,
3341
3350
(
1998
).
28.
M.
Barranco
,
R.
Guardiola
,
S.
Hernández
,
R.
Mayol
,
J.
Navarro
, and
M.
Pi
, “
Helium nanodroplets: An overview
,”
J. Low Temp. Phys.
142
,
1
(
2006
).
29.
F.
Ancilotto
,
M.
Barranco
,
F.
Coppens
,
J.
Eloranta
,
N.
Halberstadt
,
A.
Hernando
,
D.
Mateo
, and
M.
Pi
, “
Density functional theory of doped superfluid liquid helium and nanodroplets
,”
Int. Rev. Phys. Chem.
36
,
621
707
(
2017
).
30.
D.
Mateo
,
A.
Hernando
,
M.
Barranco
,
E.
Loginov
,
M.
Drabbels
, and
M.
Pi
, “
Translational dynamics of photoexcited atoms in 4He nanodroplets: The case of silver
,”
Phys. Chem. Chem. Phys.
15
,
18388
18400
(
2013
).
31.
M.
Pi
,
F.
Ancilotto
,
F.
Coppens
,
N.
Halberstadt
,
A.
Hernando
,
A.
Leal
,
D.
Mateo
,
R.
Mayol
, and
M.
Barranco
, 4He-DFT BCN-TLS: A computer package for simulating structural properties and dynamics of doped liquid helium-4 systems, https://github.com/bcntls2016/,
2016
.
32.
F.
Dalfovo
,
A.
Lastri
,
L.
Pricaupenko
,
S.
Stringari
, and
J.
Treiner
, “
Structural and dynamical properties of superfluid helium: A density-functional approach
,”
Phys. Rev. B
52
,
1193
1209
(
1995
).
33.
F.
Ancilotto
,
M.
Barranco
,
F.
Caupin
,
R.
Mayol
, and
M.
Pi
, “
Freezing of 4He and its liquid-solid interface from density functional theory
,”
Phys. Rev. B
72
,
214522
(
2005
).
34.
M.
Mella
,
G.
Calderoni
, and
F.
Cargnoni
, “
Predicting atomic dopant solvation in helium clusters: The MgHen case
,”
J. Chem. Phys.
123
,
054328
(
2005
).
35.
A.
Hernando
,
M.
Barranco
,
R.
Mayol
,
M.
Pi
, and
F.
Ancilotto
, “
Density functional theory of the structure of magnesium-doped helium nanodroplets
,”
Phys. Rev. B
78
,
184515
(
2008
).
36.
F.
Cargnoni
and
M.
Mella
, “
Solubility of metal atoms in helium droplets: Exploring the effect of the well depth using the coinage metals Cu and Ag
,”
J. Phys. Chem. A
115
,
7141
7152
(
2011
).
37.
M.
Ratschek
,
J. V.
Pototschnig
,
A. W.
Hauser
, and
W. E.
Ernst
, “
Solvation and spectral line shifts of chromium atoms in helium droplets based on a density functional theory approach
,”
J. Phys. Chem. A
118
,
6622
6631
(
2014
).
38.
K. K.
Lehmann
, “
Potential of a neutral impurity in a large 4He cluster
,”
Mol. Phys.
97
,
645
666
(
1999
).
39.
R. E.
Zillich
and
K. B.
Whaley
, “
Solvation structure and rotational dynamics of LiH in 4He clusters
,”
J. Phys. Chem. A
111
,
7489
7498
(
2007
).
40.
B.
Thaler
,
M.
Meyer
,
P.
Heim
, and
M.
Koch
, “
Long-lived nuclear coherences inside helium nanodroplets
,” preprint arXiv:1907.04157 (
2019
).
You do not currently have access to this content.