Accurate description of the ionization process in DNA is crucial to the understanding of the DNA damage under exposure to ionizing radiation and the exploration of the potential application of DNA strands in nanoelectronics. In this work, by employing our recently developed Green’s function coupled-cluster library on supercomputing facilities, we have studied the spectral functions of several guanine–cytosine (G–C) base pair structures ([G–C]n, n = 1–3) for the first time in a relatively broad near-valence regime ([−25.0, −5.0] eV) in the coupled-cluster with singles and doubles level. Our focus is to give a preliminary many-body coupled-cluster understanding and guideline of the vertical ionization energy (VIE), spectral profile, and ionization feature changes of these systems as the system size expands in this near-valence regime. The results show that, as the system size expands, even though the lowest VIEs keep decreasing, the changes of spectral function profile and the relative peak positions get unexpectedly smaller. Further analysis of the ionized states associated with the most intensive peak in the spectral functions reveals non-negligible |2h, 1p⟩’s in the ionized wave functions of the considered G–C base pair systems. The leading |2h, 1p⟩’s associated with the main ionizations from the cytosine part of the G–C base pairs feature a transition from the intra-base-pair cytosine ππ* excitation to the inter-base-pair electron excitation as the size of G–C base pairs expands, which also indicates the minimum quantum region in the many-body calculations of DNA systems.

1.
S.
Lehnert
,
Biomolecular Action of Ionizing Radiation
, Series in Medical Physics and Biomedical Engineering (
CRC Press
,
2007
).
2.
J. C.
Genereux
,
A. K.
Boal
, and
J. K.
Barton
, “
DNA-mediated charge transport in redox sensing and signaling
,”
J. Am. Chem. Soc.
132
,
891
905
(
2010
).
3.
B.
Giese
, “
Long-distance electron transfer through DNA
,”
Annu. Rev. Biochem.
71
,
51
70
(
2002
).
4.
K.
Kawai
and
T.
Majima
, “
Hole transfer kinetics of DNA
,”
Acc. Chem. Res.
46
,
2616
2625
(
2013
).
5.
C.
Dekker
and
M.
Ratner
, “
Electronic properties of DNA
,”
Phys. World
14
,
29
33
(
2001
).
6.
E.
Pluhařová
,
P.
Slavíček
, and
P.
Jungwirth
, “
Modeling photoionization of aqueous DNA and its components
,”
Acc. Chem. Res.
48
,
1209
1217
(
2015
).
7.
P.
Slaviček
,
B.
Winter
,
M.
Faubel
,
S. E.
Bradforth
, and
P.
Jungwirth
, “
Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations
,”
J. Am. Chem. Soc.
131
,
6460
6467
(
2009
).
8.
E.
Pluhařová
,
P.
Jungwirth
,
S. E.
Bradforth
, and
P.
Slavíček
, “
Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: From the gas phase to the aqueous environment
,”
J. Phys. Chem. B
115
,
1294
1305
(
2011
).
9.
M.
Rooman
and
R.
Wintjens
, “
Sequence and conformation effects on ionization potential and charge distribution of homo-nucleobase stacks using M06-2X hybrid density functional theory calculations
,”
J. Biomol. Struct. Dyn.
32
,
532
545
(
2014
).
10.
R.
Chakraborty
and
D.
Ghosh
, “
The effect of sequence on the ionization of guanine in DNA
,”
Phys. Chem. Chem. Phys.
18
,
6526
6533
(
2016
).
11.
P.
Diamantis
,
I.
Tavernelli
, and
U.
Rothlisberger
, “
Vertical ionization energies and electron affinities of native and damaged DNA bases, nucleotides, and pairs from density functional theory calculations: Model assessment and implications for DNA damage recognition and repair
,”
J. Chem. Theory Comput.
15
,
2042
2052
(
2019
).
12.
H.
Sugiyama
and
I.
Saito
, “
Theoretical studies of GG-specific photocleavage of DNA via electron transfer: Significant lowering of ionization potential and 5‘-localization of HOMO of stacked GG bases in B-form DNA
,”
J. Am. Chem. Soc.
118
,
7063
7068
(
1996
).
13.
S.
Yokojima
,
N.
Yoshiki
,
W.
Yanoi
, and
A.
Okada
, “
Solvent effects on ionization potentials of guanine runs and chemically modified guanine in duplex DNA: Effect of electrostatic interaction and its reduction due to solvent
,”
J. Phys. Chem. B
113
,
16384
16392
(
2009
).
14.
E.
Pluhařová
,
C.
Schroeder
,
R.
Seidel
,
S. E.
Bradforth
,
B.
Winter
,
M.
Faubel
,
P.
Slaviček
, and
P.
Jungwirth
, “
Unexpectedly small effect of the DNA environment on vertical ionization energies of aqueous nucleobases
,”
J. Phys. Chem. Lett.
4
,
3766
3769
(
2013
).
15.
N. L.
Nguyen
,
G.
Borghi
,
A.
Ferretti
, and
N.
Marzari
, “
First-principles photoemission spectroscopy of DNA and RNA nucleobases from Koopmans-compliant functionals
,”
J. Chem. Theory Comput.
12
,
3948
3958
(
2016
).
16.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
18.
D.
Roca-Sanjuán
,
M.
Rubio
,
M.
Merchán
, and
L.
Serrano-Andrés
, “
Ab initio determination of the ionization potentials of DNA and RNA nucleobases
,”
J. Chem. Phys.
125
,
084302
(
2006
).
19.
K. B.
Bravaya
,
O.
Kostko
,
S.
Dolgikh
,
A.
Landau
,
M.
Ahmed
, and
A. I.
Krylov
, “
Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra
,”
J. Phys. Chem. A
114
,
12305
12317
(
2010
).
20.
K. B.
Bravaya
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
Four bases score a run: Ab initio calculations quantify a cooperative effect of H-bonding and π-stacking on the ionization energy of adenine in the AATT tetramer
,”
J. Phys. Chem. Lett.
3
,
2726
2732
(
2012
).
21.
A. A.
Zadorozhnaya
and
A. I.
Krylov
, “
Zooming into π-stacked manifolds of nucleobases: Ionized states of dimethylated uracil dimers
,”
J. Phys. Chem. A
114
,
2001
2009
(
2010
).
22.
K. B.
Bravaya
,
O.
Kostko
,
M.
Ahmed
, and
A. I.
Krylov
, “
The effect of π-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: Adenine-adenine, thymine-thymine and adenine-thymine dimers
,”
Phys. Chem. Chem. Phys.
12
,
2292
2307
(
2010
).
23.
E.
Cauët
,
D.
Dehareng
, and
J.
Liévin
, “
Ab initio study of the ionization of the DNA bases: Ionization potentials and excited states of the cations
,”
J. Phys. Chem. A
110
,
9200
9211
(
2006
).
24.
H.
Farrokhpour
and
M.
Ghandehari
, “
Photoelectron spectra of some important biological molecules: Symmetry-adapted-cluster configuration interaction study
,”
J. Phys. Chem. B
117
,
6027
6041
(
2013
).
25.
V. V.
Zakjevskii
,
S. J.
King
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, “
Base and phosphate electron detachment energies of deoxyribonucleotide anions
,”
J. Am. Chem. Soc.
128
,
13350
13351
(
2006
).
26.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
27.
M.
Nooijen
and
J. G.
Snijders
, “
Coupled cluster approach to the single-particle Green’s function
,”
Int. J. Quantum Chem.
44
,
55
83
(
1992
).
28.
L.
Meissner
and
R. J.
Bartlett
, “
Electron propagator theory with the ground state correlated by the coupled-cluster method
,”
Int. J. Quantum Chem.
48
,
67
80
(
1993
).
29.
M.
Nooijen
and
J. G.
Snijders
, “
Coupled cluster Green’s function method: Working equations and applications
,”
Int. J. Quantum Chem.
48
,
15
48
(
1993
).
30.
M.
Nooijen
and
J. G.
Snijders
, “
Second order many-body perturbation approximations to the coupled cluster Green’s function
,”
J. Chem. Phys.
102
,
1681
1688
(
1995
).
31.
B.
Peng
and
K.
Kowalski
, “
Green’s function coupled-cluster approach: Simulating photoelectron spectra for realistic molecular systems
,”
J. Chem. Theory Comput.
14
,
4335
4352
(
2018
).
32.
B.
Peng
and
K.
Kowalski
, “
Green’s function coupled cluster formulations utilizing extended inner excitations
,”
J. Chem. Phys.
149
,
214102
(
2018
).
33.
J.
McClain
,
J.
Lischner
,
T.
Watson
,
D. A.
Matthews
,
E.
Ronca
,
S. G.
Louie
,
T. C.
Berkelbach
, and
G. K.-L.
Chan
, “
Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the GW and related approximations
,”
Phys. Rev. B
93
,
235139
(
2016
).
34.
H.
Nishi
,
T.
Kosugi
,
Y.
Furukawa
, and
Y.-i.
Matsushita
, “
Quasiparticle energy spectra of isolated atoms from coupled-cluster singles and doubles (CCSD): Comparison with exact CI calculations
,”
J. Chem. Phys.
149
,
034106
(
2018
).
35.
T.
Kosugi
,
H.
Nishi
,
Y.
Furukawa
, and
Y.-i.
Matsushita
, “
Comparison of Green’s functions for transition metal atoms using self-energy functional theory and coupled-cluster singles and doubles (CCSD)
,”
J. Chem. Phys.
148
,
224103
(
2018
).
36.
Y.
Furukawa
,
T.
Kosugi
,
H.
Nishi
, and
Y.-i.
Matsushita
, “
Band structures in coupled-cluster singles-and-doubles Green’s function (GFCCSD)
,”
J. Chem. Phys.
148
,
204109
(
2018
).
37.
B.
Peng
,
R.
Van Beeumen
,
D. B.
Williams-Young
,
K.
Kowalski
, and
C.
Yang
, “
Approximate Green’s function coupled cluster method employing effective dimension reduction
,”
J. Chem. Theory Comput.
15
,
3185
3196
(
2019
).
38.
E.
Mutlu
,
K.
Kowalski
, and
S.
Krishnamoorthy
, “
Toward generalized tensor algebra for ab initio quantum chemistry methods
,” in
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming, ARRAY 2019
(
ACM
,
New York, NY, USA
,
2019
), pp.
46
56
.
39.
S.
Miertuš
,
E.
Scrocco
, and
J.
Tomasi
, “
Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects
,”
Chem. Phys.
55
,
117
129
(
1981
).
40.
C.
Amovilli
,
V.
Barone
,
R.
Cammi
,
E.
Cancès
,
M.
Cossi
,
B.
Mennucci
,
C. S.
Pomelli
, and
J.
Tomasi
,
Recent Advances in the Description of Solvent Effects with the Polarizable Continuum Model
(
Academic Press
,
1998
), pp.
227
261
.
41.
J.
Tomasi
,
R.
Cammi
,
B.
Mennucci
,
C.
Cappelli
, and
S.
Corni
, “
Molecular properties in solution described with a continuum solvation model
,”
Phys. Chem. Chem. Phys.
4
,
5697
5712
(
2002
).
42.
N.
Hush
and
A. S.
Cheung
, “
Ionization potentials and donor properties of nucleic acid bases and related compounds
,”
Chem. Phys. Lett.
34
,
11
13
(
1975
).
43.
D.
Dougherty
,
E.
Younathan
,
R.
Voll
,
S.
Abdulnur
, and
S.
McGlynn
, “
Photoelectron spectroscopy of some biological molecules
,”
J. Electron Spectrosc. Relat. Phenom.
13
,
379
393
(
1978
).
44.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
, “
Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine)
,”
J. Phys. Chem. A
111
,
7562
7568
(
2007
).
45.
J.
Zhou
,
O.
Kostko
,
C.
Nicolas
,
X.
Tang
,
L.
Belau
,
M. S.
de Vries
, and
M.
Ahmed
, “
Experimental observation of guanine tautomers with VUV photoionization
,”
J. Phys. Chem. A
113
,
4829
4832
(
2009
).
46.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
47.
S.
Ren
,
J.
Harms
, and
M.
Caricato
, “
An EOM-CCSD-PCM benchmark for electronic excitation energies of solvated molecules
,”
J. Chem. Theory Comput.
13
,
117
124
(
2017
).
48.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H. V.
Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
, “
NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
1489
(
2010
).

Supplementary Material

You do not currently have access to this content.