Photo-luminescence (P-L) intermittency (or blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between “bright” (“On”) and “dark” (“Off”) states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signals, and yet, a vast majority of single-NC blinking data are analyzed using a single fixed threshold which generates binary trajectories. Furthermore, while blinking dynamics can vary dramatically over NCs in the ensemble, the extent of diversity in the exponents (mOn/Off) of single-particle On-/Off-time distributions (P(tOn/Off)), often used to validate mechanistic models of blinking, remains unclear due to a lack of statistically relevant data sets. Here, we subclassify an ensemble of QDs based on the emissivity of each emitter and subsequently compare the (sub)ensembles’ behaviors. To achieve this, we analyzed a large number (>1000) of blinking trajectories for a model system, Mn+2 doped ZnCdS QDs, which exhibits diverse blinking dynamics. An intensity histogram dependent thresholding method allowed us to construct distributions of relevant blinking parameters (such as mOn/Off). Interestingly, we find that single QD P(tOn/Off)s follow either truncated power law or power law, and their relative proportion varies over subpopulations. Our results reveal a remarkable variation in mOn/Off amongst as well as within subensembles, which implies multiple blinking mechanisms being operational amongst various QDs. We further show that the mOn/Off obtained via cumulative single-particle P(tOn/Off) is distinct from the weighted mean value of all single-particle mOn/Off, evidence for the lack of ergodicity. Thus, investigation and analyses of a large number of QDs, albeit for a limited time span of a few decades, are crucial to characterize the spatial heterogeneity in possible blinking mechanisms.

1.
R. M.
Dickson
,
A. B.
Cubitt
,
R. Y.
Tsien
, and
W. E.
Moerner
,
Nature
388
,
355
358
(
1997
).
2.
D. A. V.
Bout
,
W.-T.
Yip
,
D.
Hu
,
D.-K.
Fu
,
T. M.
Swager
, and
P. F.
Barbara
,
Science
277
,
1074
1077
(
1997
).
3.
S.
Wang
,
C.
Querner
,
T.
Emmons
,
M.
Drndic
, and
C. H.
Crouch
,
J. Phys. Chem. B
110
,
23221
23227
(
2008
).
4.
S.
Wang
,
C.
Querner
,
M. D.
Fischbein
,
L.
Willis
,
D. S.
Novikov
,
C. H.
Crouch
, and
M.
Drndic
,
Nano Lett.
8
,
4020
(
2008
).
5.
M.
Nirmal
,
B. O.
Dabbousi
,
M. G.
Bawendi
,
J. J.
Macklin
,
J. K.
Trautman
,
T. D.
Harris
, and
L. E.
Brus
,
Nature
383
,
802
804
(
1996
).
6.
M.
Kuno
,
D. P.
Fromm
,
H. F.
Hamann
,
A.
Gallagher
, and
D. J.
Nesbitt
,
J. Chem. Phys.
112
,
3117
3120
(
2000
).
7.
F. D.
Stefani
,
X.
Zhong
,
W.
Knoll
,
M.
Kreiter
, and
M.
Han
,
Phys. Rev. B
72
,
125304
(
2005
).
8.
A. L.
Efros
and
M.
Rosen
,
Phys. Rev. Lett.
78
,
1110
1113
(
1997
).
9.
M.
Kuno
,
D. P.
Fromm
,
H. F.
Hamann
,
A.
Gallagher
, and
D. J.
Nesbitt
,
J. Chem. Phys.
115
,
1028
1040
(
2001
).
10.
X.
Brokmann
,
E.
Giacobino
,
M.
Dahan
, and
J. P.
Hermier
,
Appl. Phys. Lett.
85
,
712
(
2004
).
11.
Y.
Chan
,
J. M.
Caruge
,
P. T.
Snee
, and
M. G.
Bawendi
,
Appl. Phys. Lett.
85
,
2460
(
2004
).
12.
M.
Bruchez
,
M.
Moronne
,
P.
Gin
,
S.
Weiss
, and
A. P.
Alivisatos
,
Science
281
,
2013
(
1998
).
13.
B.
Dubertret
,
P.
Skourides
,
D. J.
Norris
,
V.
Noireaux
,
A. H.
Brivanlou
, and
A.
Libchaber
,
Science
298
,
1759
(
2002
).
14.
V. I.
Klimov
,
A. A.
Mikhailovsky
,
D. W.
McBranch
,
C. A.
Leatherdale
, and
M. G.
Bawendi
,
Science
287
,
1011
1013
(
2000
).
15.
P. A.
Frantsuzov
,
M.
Kuno
,
B.
Janko
, and
R. A.
Marcus
,
Nat. Phys.
4
,
519
522
(
2008
).
16.
R.
Verberk
,
A. M.
Van Oijen
, and
M.
Orrit
,
Phys. Rev. B
66
,
233202
(
2002
).
17.
P. A.
Frantsuzov
,
S.
Volkań-Kacsó
, and
B.
Jankó
,
Nano Lett.
13
,
402
408
(
2013
).
18.
S.
Volkań-Kacsó
,
P. A.
Frantsuzov
, and
B.
Jankó
,
Nano Lett.
10
,
2761
2765
(
2010
).
19.
P. A.
Frantsuzov
,
S.
Volkań-Kacsó
, and
B.
Jankó
,
Phys. Rev. Lett.
103
,
207402
(
2009
).
20.
K. T.
Shimizu
,
C. A.
Leatherdale
,
S. A.
Empedocles
,
W. K.
Woo
, and
M. G.
Bawendi
,
Phys. Rev. B
63
,
205316
(
2001
).
21.
M.
Pelton
,
G.
Smith
,
N. F.
Scherer
, and
R. A.
Marcus
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
14249
14254
(
2007
).
22.
J.
Tang
and
R. A.
Marcus
,
Phys. Rev. Lett.
95
,
107401
(
2005
).
23.
J.
Tang
and
R. A.
Marcus
,
J. Chem. Phys.
123
,
054704
(
2005
).
24.
G.
Margolin
,
V.
Protasenko
,
M.
Kuno
, and
E.
Barkai
,
Adv. Chem. Phys.
133
,
327
356
(
2006
).
25.
P. A.
Frantsuzov
and
R. A.
Marcus
,
Phys. Rev. B
72
,
155321
(
2005
).
26.
G.
Yuan
,
D. E.
Gomez
,
N.
Kirkwood
,
K.
Boldt
, and
P.
Mulvaney
,
ACS Nano
12
,
3397
3405
(
2018
).
27.
I. S.
Osad’ko
,
I. Y.
Eermchev
,
A. V.
Naumov
,
J. Phys. Chem. C
119
,
22646
22652
(
2015
).
28.
C.
Galland
,
Y.
Ghosh
,
A.
Steinbruck
,
M.
Sykora
,
J. A.
Hollingsworth
,
V. I.
Klimov
, and
H.
Htoon
,
Nature
479
,
203
207
(
2011
).
30.
F. D.
Stefani
,
J. P.
Hoogenboom
, and
E.
Barkai
,
Phys. Today
62
(
2
),
34
39
(
2009
).
31.
S.
Volkań-Kacsó
,
J. Chem. Phys.
140
,
224110
(
2015
).
32.
C. H.
Crouch
,
O.
Sauter
,
X.
Wu
,
R.
Purcell
,
C.
Querner
,
M.
Drndic
, and
M.
Pelton
,
Nano Lett.
10
,
1692
1698
(
2010
).
33.
I. H.
Chung
and
M. G.
Bawendi
,
Phys. Rev. B
70
,
165304
(
2004
).
34.
J. J.
Peterson
and
D. J.
Nesbitt
,
Nano Lett.
9
,
338
345
(
2009
).
35.
P.
Jha
and
P.
Guyot-Sionnest
,
ACS Nano
3
,
1011
(
2009
).
36.
D. K.
Sharma
,
S.
Hirata
,
V.
Biju
, and
M.
Vacha
,
ACS Nano
13
,
624
632
(
2019
).
37.
J.
Zhao
,
G.
Nair
,
B. R.
Fisher
, and
M. G.
Bawendi
,
Phys. Rev. Lett.
104
,
157403
(
2010
).
38.
S.
Rosen
,
O.
Schwartz
, and
D.
Oron
,
Phys. Rev. Lett.
104
,
157404
(
2010
).
39.
R.
Tenne
,
A.
Teitelboim
,
P.
Rukenstein
,
M.
Dyshel
,
T.
Mokari
, and
D.
Oron
,
ACS Nano
7
,
5084
(
2013
).
40.
F.
Gao
,
P.
Bajwa
,
A.
Nguyen
, and
C. D.
Heyes
,
ACS Nano
11
,
2905
2916
(
2017
).
41.
F. D.
Stefani
,
X.
Zhong
,
W.
Knoll
,
M.
Han
, and
M.
Kreiter
,
New J. Phys.
7
,
197
(
2005
).
42.
F.
Cichos
,
C.
Von Borczyskowski
, and
M.
Orrit
,
Curr. Opin. Colloid Interface Sci.
12
,
272
284
(
2007
).
43.
D. E.
Gomez
,
M.
Califano
, and
P.
Mulvaney
,
Phys. Chem. Chem. Phys.
8
,
4989
5011
(
2006
).
44.
K. T.
Shimizu
,
W. K.
Woo
,
B. R.
Fisher
,
H. J.
Eisler
, and
M. G.
Bawendi
,
Phys. Rev. Lett.
89
,
117401
(
2002
).
45.
X.
Brokmann
,
J. P.
Hermier
,
G.
Messin
,
P.
Desbiolles
,
J. P.
Bouchaud
, and
M.
Dahan
,
Phys. Rev. Lett.
90
,
120601
(
2003
).
46.
M.
Kuno
,
D. P.
Fromm
,
S. T.
Johnson
,
A.
Gallagher
, and
D. J.
Nesbitt
,
Phys. Rev. B
67
,
125304
(
2003
).
47.
F.
Cichos
,
J.
Martin
, and
C.
Von Borczyskowski
,
Phys. Rev. B
70
,
115314
(
2004
).
48.
M.
Pelton
,
D. G.
Grier
, and
P.
Guyot-Sionnest
,
Appl. Phys. Lett.
85
,
819
(
2004
).
49.
B.
Bruhn
,
J.
Valenta
,
F.
Sangghaleh
, and
J.
Linnros
,
Nano Lett.
11
,
5574
5580
(
2011
).
50.
A.
Ishizumi
and
Y.
Kanemitsu
,
J. Phys. Soc. Jpn.
78
,
083705
083708
(
2009
).
51.
A.
Hazarika
,
A.
Layek
,
S.
De
,
A.
Nag
,
S.
Debnath
,
P.
Mahadevan
,
A.
Chowdhury
, and
D. D.
Sarma
,
Phys. Rev. Lett.
110
,
26740
(
2013
).
52.
Y.
Zhang
,
C.
Gan
,
J.
Muhammad
,
D.
Battaglia
,
X.
Peng
, and
M.
Xia
,
J. Phys. Chem. C
112
,
20200
20205
(
2008
).
53.
M.
Yu
and
A.
Van Orden
,
Phys. Rev. Lett.
97
,
237402
(
2006
).
54.
H. –Y.
Qin
,
X. –J.
Shang
,
Z. J.
Ning
,
T.
Fu
,
Z. –C.
Niu
,
H.
Brismar
,
H.
Agren
, and
Y.
Fu
,
J. Phys. Chem. C
116
,
12786
12790
(
2012
).
55.
M.
Hamada
,
S.
Nakanishi
,
T.
Itoh
,
M.
Ishikawa
, and
V.
Biju
,
ACS Nano
4
,
4445
4454
(
2010
).
56.
S.
Jin
,
J.-C.
Hsiang
,
H.
Zhu
,
N.
Song
,
R. M.
Dickson
, and
T.
Lian
,
Chem. Sci.
1
,
519
526
(
2010
).
57.
M. –E.
Pistol
,
P.
Castrillo
,
D.
Hessman
,
J. A.
Prieto
, and
L.
Samuelson
,
Phys. Rev. B
59
,
10725
10729
(
1999
).
58.
K. G.
Sonawane
,
K. S.
Agarwal
,
C.
Phadnis
,
D. K.
Sharma
,
A.
Layek
,
A.
Chowdhury
, and
S.
Mahamuni
,
J. Phys. Chem. C
120
,
5257
5264
(
2016
).
59.
O.
Naaman
and
J.
Aumentado
,
Phys. Rev. Lett.
96
,
100201
(
2006
).
60.
K.
Peck
,
L.
Stryer
,
A. N.
Glazer
, and
R. A.
Mathies
,
Proc. Natl. Acad. Sci. U. S. A.
86
,
4087
4091
(
1989
).
61.
D.
Roy
,
S.
Mandal
,
C. K.
De
,
K.
Kuma
, and
P. K.
Mandal
,
Phys. Chem. Chem. Phys.
20
,
10332
10344
(
2018
).
62.
S. F.
Lee
and
M. A.
Osborne
,
ChemPhysChem
10
,
2174
2191
(
2009
).
63.
Y.-S.
Park
,
J.
Lim
,
N. S.
Makarov
, and
V. I.
Klimov
,
Nano Lett.
17
,
5607
(
2017
).
64.
G.
Margolin
,
V.
Protasenko
,
M.
Kuno
, and
E.
Barkai
,
J. Phys. Chem. B
110
,
19053
19060
(
2006
).
65.
A. A.
Cordones
,
K. L.
Knappenberger
, and
S. R.
Leone
,
J. Phys. Chem. B
117
,
4241
4248
(
2013
).
66.
S.
Bhattacharya
,
D. K.
Sharma
,
S.
Saurabh
,
S.
De
,
A.
Sain
,
A.
Nandi
, and
A.
Chowdhury
,
J. Phys. Chem. B
117
,
7771
7782
(
2013
).
67.
W. C.
Wong
,
J.-Y.
Juo
,
C.-H.
Lin
,
Y.-H.
Liao
,
C.-Y.
Cheng
, and
C.-L.
Hsieh
,
J. Phys. Chem. B
123
,
6492
(
2019
).
68.
G.
Seisenberger
,
M. U.
Ried
,
T.
Endreß
,
H.
Buning
,
M.
Hallek
, and
C.
Brauchle
,
Science
294
,
1929
(
2001
).
69.
B. R.
Parry
,
I. V.
Surovtsev
,
M. T.
Cabeen
,
C. S.
O’Hern
,
E. R.
Dufresne
, and
C.
Jacobs-Wagner
,
Cell
156
,
1
2
(
2014
).
70.
E.
Barkai
,
Y.
Garini
, and
R.
Metzler
,
Phys. Today
65
(
8
),
29
(
2012
).
71.
C.
Manzo
,
J. A.
Torreno-Pina
,
P.
Massignan
,
G. J.
Lapeyre
, Jr.
,
M.
Lewenstein
, and
M. F.
Garcia Parajo
,
Phys. Rev. X
5
,
011021
(
2015
).

Supplementary Material

You do not currently have access to this content.