We introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen). Using the default cut-off parameters, we were able to recover over 99.7% and 99.8% of the canonical correlation energy for the triplet and singlet state of TME, respectively. In the case of oxo-Mn(Salen), we found that the amount of retrieved canonical correlation energy depends on the size of the complete active space (CAS)—we retrieved over 99.6% for the larger 27 orbital CAS and over 99.8% for the smaller 22 orbital CAS. The use of LPNO-TCCSD allowed us to perform these calculations up to quadruple-ζ basis set, amounting to 1178 basis functions. Moreover, we examined dependence of the ground state of oxo-Mn(Salen) on the CAS composition. We found that the inclusion of 4dxy orbital plays an important role in stabilizing the singlet state at the DMRG-CASSCF level via double-shell effect. However, by including dynamic correlation, the ground state was found to be triplet regardless of the size of the basis set or the composition of CAS, which is in agreement with previous findings by canonical DMRG-TCCSD in smaller basis.

1.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
2.
J.
Gauss
, in
The Encyclopedia of Computational Chemistry
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
 III
, and
P. R.
Scheiner
(
Wiley
,
Chichester
,
1998
), pp.
615
636
.
3.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
4.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
D. P.
Tew
,
C.
Hättig
,
R. A.
Bachorz
, and
W.
Klopper
, in
Recent Progress in Coupled Cluster Methods
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer Science
,
New York
,
2010
), p.
535
.
6.
D. I.
Lyakh
,
M.
Musial
,
V. F.
Lotrich
, and
R. J.
Bartlett
,
Chem. Rev.
112
,
182
243
(
2012
).
7.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
107
,
6257
(
1997
).
8.
X.
Li
and
J.
Paldus
,
J. Mol. Struct.: THEOCHEM
547
,
69
81
(
2001
).
9.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
115
,
5759
5773
(
2001
).
10.
X.
Li
and
J.
Paldus
,
J. Chem. Phys.
115
,
5774
5783
(
2001
).
11.
J.
Paldus
and
J.
Planelles
,
Theor. Chim. Acta
89
,
13
(
1994
).
12.
P.
Piecuch
,
R.
Tobola
, and
J.
Paldus
,
Phys. Rev. A
54
,
1210
(
1996
).
13.
X.
Li
,
G.
Peris
,
J.
Planelles
,
F.
Rajadell
, and
J.
Paldus
,
J. Chem. Phys.
107
,
90
(
1997
).
14.
T.
Kinoshita
,
O.
Hino
, and
R. J.
Bartlett
,
J. Chem. Phys.
123
,
074106
(
2005
).
15.
D. I.
Lyakh
,
V. F.
Lotrich
, and
R.
Bartlett
,
J. Chem. Phys. Lett.
501
,
166
171
(
2011
).
16.
A.
Melnichuk
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
214103
(
2012
).
17.
A.
Melnichuk
and
R. J.
Bartlett
,
J. Chem. Phys.
140
,
064113
(
2014
).
18.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
,
J. Chem. Phys.
99
,
1875
1900
(
1993
).
19.
P.
Piecuch
and
L.
Adamowicz
,
J. Chem. Phys.
100
,
5792
5809
(
1994
).
20.
L.
Adamovicz
,
P.
Piecuch
, and
K. B.
Ghose
,
Mol. Phys.
94
,
225
234
(
1998
).
21.
P.
Piecuch
,
Mol. Phys.
108
,
2987
3015
(
2010
).
22.
P.
Piecuch
,
K.
Kowalski
,
I. S. O.
Pimienta
, and
M. J.
Mcguire
,
Int. Rev. Phys. Chem.
21
,
527
655
(
2002
).
23.
P.
Piecuch
,
K.
Kowalski
, and
I.
Pimienta
,
Int. J. Mol. Sci.
3
,
475
497
(
2002
).
24.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
116
,
7411
7423
(
2002
).
25.
M. W.
Łoch
,
M. D.
Lodriguito
,
P.
Piecuch†
, and
J. R.
Gour
,
Mol. Phys.
104
,
2149
2172
(
2006
).
26.
M. D.
Lodriguito
,
K.
Kowalski
,
M.
Włoch
, and
P.
Piecuch
,
J. Mol. Struct.: THEOCHEM
771
,
89
104
(
2006
).
27.
P.
Piecuch
,
K.
Kowalski
,
I. S. O.
Pimienta
,
P.-D.
Fan
,
M.
Lodriguito
,
M. J.
McGuire
,
S. A.
Kucharski
,
T.
Kuś
, and
M.
Musiał
,
Theor. Chem. Acc.
112
,
349
393
(
2004
).
28.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
115
,
2966
2978
(
2001
).
29.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
113
,
18
35
(
2000
).
30.
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
F.
Neese
,
O.
Legeza
, and
J.
Pittner
,
J. Phys. Chem. Lett.
7
,
4072
(
2016
).
31.
S. R.
White
and
R. M.
Noack
,
Phys. Rev. Lett.
68
,
3487
3490
(
1992
).
32.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
33.
S. R.
White
,
Phys. Rev. B
48
,
10345
10356
(
1993
).
34.
S. R.
White
and
R. L.
Martin
,
J. Chem. Phys.
110
,
4127
4130
(
1999
).
35.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
4476
(
2002
).
36.
Ö.
Legeza
,
J.
Röder
, and
B. A.
Hess
,
Phys. Rev. B
67
,
125114
(
2003
).
37.
Ö.
Legeza
,
R.
Noack
,
J.
Sólyom
, and
L.
Tincani
, in
Computational Many-Particle Physics
, Lecture Notes in Physics Vol. 739, edited by
H.
Fehske
,
R.
Schneider
, and
A.
Weisse
(
Springer Berlin Heidelberg
,
2008
), pp.
653
664
.
38.
K. H.
Marti
and
M.
Reiher
,
Z. Phys. Chem.
224
,
583
599
(
2010
).
39.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
40.
S.
Wouters
and
D.
Van Neck
,
Eur. Phys. J. D
68
,
272
(
2014
).
41.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
,
Int. J. Quantum Chem.
115
,
1342
(
2015
).
42.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
,
Int. J. Quantum Chem.
115
,
283
299
(
2014
).
43.
Y.
Kurashige
and
T.
Yanai
,
J. Chem. Phys.
135
,
094104
(
2011
).
44.
L.
Freitag
,
S.
Knecht
,
C.
Angeli
, and
M.
Reiher
,
J. Chem. Theory Comput.
13
,
451
459
(
2017
).
45.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
,
J. Chem. Phys.
139
,
044118
(
2013
).
46.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
271
(
2010
).
47.
S.
Sharma
and
G.
Chan
,
J. Chem. Phys.
141
,
111101
(
2014
).
48.
P.
Sharma
,
V.
Bernales
,
S.
Knecht
,
D. G.
Truhlar
, and
L.
Gagliardi
,
Chem. Sci.
10
,
1716
1723
(
2019
).
49.
L.
Veis
,
A.
Antalik
,
O.
Legeza
,
A.
Alavi
, and
J.
Pittner
,
J. Chem. Theory Comput.
14
,
2439
(
2018
).
50.
F. M.
Faulstich
,
A.
Laestadius
,
S.
Kvaal
,
Ö.
Legeza
, and
R.
Schneider
, e-print arXiv:1802.05699 (
2018
).
51.
F. M.
Faulstich
,
M.
Máté
,
A.
Laestadius
,
M. A.
Csirik
,
L.
Veis
,
A.
Antalik
,
J.
Brabec
,
R.
Schneider
,
J.
Pittner
,
S.
Kvaal
, and
Ö.
Legeza
,
J. Chem. Theory Comput.
15
,
2206
2220
(
2019
).
52.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
53.
D. G.
Fedorov
and
K.
Kitaura
,
J. Chem. Phys.
123
,
134103
(
2005
).
54.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
129
,
044103
(
2008
).
55.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
8343
(
1999
).
56.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
244
(
2001
).
57.
H.
Stoll
,
Chem. Phys. Lett.
191
,
548
552
(
1992
).
58.
K.
Kristensen
,
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
7
,
1677
1694
(
2011
).
59.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
60.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
61.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
62.
C.
Edmiston
and
M.
Krauss
,
J. Chem. Phys.
42
,
1119
1120
(
1965
).
63.
W.
Meyer
,
Int. J. Quantum Chem.
5
,
341
348
(
1971
).
64.
W.
Meyer
,
Theor. Chem. Acc.
35
,
277
292
(
1974
).
65.
P. R.
Taylor
,
J. Chem. Phys.
74
,
1256
1270
(
1981
).
66.
R.
Fink
and
V.
Staemmler
,
Theor. Chem. Acc.
87
,
129
145
(
1993
).
67.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
518
(
1993
).
68.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
69.
O.
Demel
,
J.
Pittner
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
3104
3114
(
2015
).
70.
J.
Lang
,
M.
Švaňa
,
O.
Demel
,
J.
Brabec
,
S.
Kedžuch
,
J.
Noga
,
K.
Kowalski
, and
J.
Pittner
,
Mol. Phys.
115
,
2743
2754
(
2017
).
71.
J.
Brabec
,
J.
Lang
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
J. Chem. Theory Comput.
14
,
1370
1382
(
2018
).
72.
J.
Lang
,
J.
Brabec
,
M.
Saitow
,
J.
Pittner
,
F.
Neese
, and
O.
Demel
,
Phys. Chem. Chem. Phys.
21
,
5022
5038
(
2019
).
73.
G.
Moritz
and
M.
Reiher
,
J. Chem. Phys.
126
,
244109
(
2007
).
74.
K.
Boguslawski
,
K. H.
Marti
, and
M.
Reiher
,
J. Chem. Phys.
134
,
224101
(
2011
).
75.
Ö.
Legeza
,
L.
Veis
, and
T.
Mosoni
, “
QC-DMRG-Budapest, a program for quantum chemical DMRG calculations
” (unpublished).
76.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
77.
J.
Ivanic
,
J. R.
Collins
, and
S. K. J.
Burt
,
J. Phys. Chem. A
108
,
2314
2323
(
2004
).
78.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
79.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144116
(
2008
).
80.
T.
Yanai
,
Y.
Kurashige
,
D.
Ghosh
, and
G. K.-L.
Chan
,
Int. J. Quantum Chem.
109
,
2178
2190
(
2009
).
81.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
82.
D.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
83.
N.
Balabanov
and
K.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
84.
J.
Pipek
and
M. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
85.
G.
Barcza
,
Ö.
Legeza
,
K. H.
Marti
, and
M.
Reiher
,
Phys. Rev. A
83
,
012508
(
2011
).
86.
E.
Fertitta
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
Phys. Rev. B
90
,
245129
(
2014
).
87.
Ö.
Legeza
and
J.
Sólyom
,
Phys. Rev. B
68
,
195116
(
2003
).
88.
Ö.
Legeza
and
L.
Sólyom
,
Phys. Rev. B
70
,
205118
(
2004
).
89.
F.
Weigend
,
A.
Kohn
, and
C.
Hattig
,
J. Chem. Phys.
116
,
3175
(
2002
).
90.
D. H.
Bross
,
J. G.
Hill
,
H. J.
Werner
, and
K. A.
Peterson
,
J. Chem. Phys.
139
,
094302
(
2013
).
91.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
, and
I.
Hubač
,
J. Phys. Chem. A
105
,
1354
1356
(
2001
).
92.
K.
Bhaskaran-Nair
,
O.
Demel
,
J.
Šmydke
, and
J.
Pittner
,
J. Chem. Phys.
134
,
154106
(
2011
).
93.
S.
Chattopadhyay
,
R. K.
Chaudhuri
, and
U. S.
Mahapatra
,
ChemPhysChem
12
,
2791
2797
(
2011
).
94.
Z. D.
Pozun
,
X.
Su
, and
K. D.
Jordan
,
J. Am. Chem. Soc.
135
,
13862
13869
(
2013
).
95.
W.
Zhang
,
J. L.
Loebach
,
S. R.
Wilson
, and
E. N.
Jacobsen
,
J. Am. Chem. Soc.
112
,
2801
(
1990
).
96.
R.
Irie
,
K.
Noda
,
Y.
Ito
,
N.
Matsumoto
, and
T.
Katsuki
,
Tetrahedron Lett.
31
,
7345
(
1990
).
97.
J. S.
Sears
and
C. D.
Sherrill
,
J. Chem. Phys.
124
,
144314
(
2006
).
98.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
,
J. Chem. Phys.
135
,
044128
(
2011
).
99.
S.
Wouters
,
T.
Bogaerts
,
P.
Van Der Voort
,
V.
Van Speybroeck
, and
D.
Van Neck
,
J. Chem. Phys.
140
,
241103
(
2014
).
100.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
, and
S.
Sharma
,
J. Chem. Phys.
142
,
034102
(
2015
).
101.
C. J.
Stein
and
M.
Reiher
,
J. Chem. Theory Comput.
12
,
1760
(
2016
).
102.
S.
Sharma
,
G.
Knizia
,
S.
Guo
, and
A.
Alavi
,
J. Chem. Theory Comput.
13
,
488
(
2017
).
103.
J.
Chalupský
, Charmol - program for molecular graphics.

Supplementary Material

You do not currently have access to this content.