We study the inverse problem of tuning interaction parameters between charged colloidal particles interacting with a hard-core repulsive Yukawa potential, so that they assemble into specified crystal structures. Here, we target the body-centered-cubic (bcc) structure which is only stable in a small region in the phase diagram of charged colloids and is, therefore, challenging to find. In order to achieve this goal, we use the statistical fluctuations in the bond orientational order parameters to tune the interaction parameters for the bcc structure, while initializing the system in the fluid phase, using the Statistical Physics-inspired Inverse Design algorithm. We also find that this optimization algorithm correctly senses the fluid-solid phase boundaries for charged colloids. Finally, we repeat the procedure employing the covariance matrix adaptation-evolution strategy, a cutting edge optimization technique, and compare the relative efficacy of the two methods.

1.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett.
95
,
228301
(
2005
).
2.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett.
97
,
239901
(
2006
).
3.
M. C.
Rechtsman
 et al,
Phys. Rev. Lett.
101
,
073902
(
2008
).
4.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. Lett.
101
,
085501
(
2008
).
5.
S.
Torquato
,
Soft Matter
5
,
1157
(
2009
).
6.
A.
Jain
,
J. A.
Bollinger
, and
T. M.
Truskett
,
Chem. Eng. J.
60
,
2732
(
2014
).
7.
8.
K. M.
Ho
,
C. T.
Chan
, and
C. M.
SouKoulis
,
Phys. Rev. Lett.
65
,
3152
(
1990
).
9.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
10.
B. I.
Dahiyat
and
S. L.
Mayo
,
Science
278
,
82
(
1997
).
11.
B.
Kuhlman
 et al,
Science
302
,
1364
(
2003
).
12.
S.
Hyun
and
S.
Torquato
,
J. Mater. Res.
16
,
280
(
2001
).
13.
A. F.
Hannon
 et al,
ACS Macro Lett.
2
,
251
(
2013
).
14.
J. B.
Chang
 et al,
Nat. Commun.
5
,
3305
(
2014
).
15.
M. C.
Rechtsman
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
73
,
011406
(
2006
).
16.
A. F.
Hannon
 et al,
Nano Lett.
14
,
318
(
2014
).
17.
S.
Hormoz
and
M. P.
Brenner
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
5193
(
2011
).
18.
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
,
J. Chem. Phys.
145
,
111101
(
2016
).
19.
R. B.
Jadrich
,
B. A.
Lindquist
, and
T. M.
Truskett
,
J. Chem. Phys.
146
,
184103
(
2017
).
20.
C. S.
Adorf
,
J.
Antonaglia
,
J.
Dshemuchadse
, and
S. C.
Glotzer
,
J. Chem. Phys.
149
,
204102
(
2018
).
21.
M. Z.
Miskin
,
G.
Khaira
,
J. J.
de Pablo
, and
H. M.
Jaeger
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
34
(
2016
).
22.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
23.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
24.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
25.
L.
Ingber
, Global Optimization C-Code,
Caltech Alumni Association
,
Pasadena, CA
,
1993
.
26.
L.
Ingber
, preprint arXiv:cs/0001018 (
2000
).
27.
M. A. M.
De Oca
,
T.
Stützle
,
M.
Birattari
, and
M.
Dorigo
, in
International Workshop on Ant Colony Optimization and Swarm Intelligence
(
Springer
,
2006
), pp.
1
12
.
28.
M.
Mitchell
,
An Introduction to Genetic Algorithms
(
MIT Press
,
1998
).
29.
N.
Hansen
and
A.
Ostermeier
,
Evol. Comput.
9
,
159
(
2001
).
30.
N.
Hansen
,
S. D.
Müller
, and
P.
Koumoutsakos
,
Evol. Comput.
11
,
1
(
2003
).
31.
N.
Hansen
,
Towards a New Evolutionary Computation
(
Springer
,
2006
), pp.
75
102
.
32.
E. J.
Meijer
,
F.
El Azhar
, and
F.
El Azhar
,
J. Chem. Phys.
106
,
4678
(
1997
).
33.
F.
El Azhar
,
M.
Baus
,
J. P.
Ryckaert
, and
E. J.
Meijer
,
J. Chem. Phys.
112
,
5121
(
2000
).
34.
A. P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. E
68
,
021407
(
2003
).
35.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
,
J. Chem. Phys.
136
,
234107
(
2012
).
You do not currently have access to this content.