Decades of molecular simulation history proved that the Green-Kubo method for shear viscosity converges without any problems in atomic and simple molecular liquids, unlike liquids with high values of viscosity. In the case of highly viscous liquids, the time decomposition method was developed in 2015 by Maginn and co-authors [Y. Zhang, A. Otani, and E. J. Maginn, J. Chem. Theory Comput. 11, 3537–3546 (2015)] which allows us to improve the convergence of the Green-Kubo integral. In this paper, the contributions of intramolecular and intermolecular force field parts to the viscosity integral are discovered to gain the understanding of the Green-Kubo method. The n-alkanes from n-ethane to n-pentane at 330 K in the optimized potentials for liquid simulations-all atom force field are used as reference models. The dependencies of these contributions and decay times of the corresponding correlation functions on the chain length are observed. The nonequilibrium simulations are carried out to verify the Green-Kubo results. The obtained values of viscosity are compared with experimental data.

1.
S.
Bair
,
Y.
Liu
, and
Q. J.
Wang
, “
The pressure-viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response
,”
J. Tribol.
128
,
624
(
2006
).
2.
S.
Bair
,
L.
Martinie
, and
P.
Vergne
, “
Classical EHL versus quantitative EHL: A perspective part II—Super-Arrhenius piezoviscosity, an essential component of elastohydrodynamic friction missing from classical EHL
,”
Tribol. Lett.
63
,
37
(
2016
).
3.
M. A.
Orekhov
, “
Fluctuation enhancement of ion diffusivity in liquids
,”
Phys. Chem. Chem. Phys.
19
,
32398
32403
(
2017
).
4.
E.
Iakovlev
,
P.
Zhilyaev
, and
I.
Akhatov
, “
Atomistic study of the solid state inside graphene nanobubbles
,”
Sci. Rep.
7
,
17906
(
2017
).
5.
G.
Norman
and
I.
Saitov
, “
Plasma phase transition in warm dense hydrogen
,”
Contrib. Plasma Phys.
58
,
122
127
(
2018
).
6.
G.
Ostroumova
,
N.
Orekhov
, and
V.
Stegailov
, “
Reactive molecular-dynamics study of onion-like carbon nanoparticle formation
,”
Diamond Relat. Mater.
94
,
14
20
(
2019
).
7.
V. A.
Nikitina
,
S. A.
Kislenko
, and
R. R.
Nazmutdinov
, “
Understanding the nature of heterogeneous electron transfer in molecular and ionic solvents: Experiment, theory, and computations
,”
J. Phys. Chem. C
123
,
14370
14381
(
2019
).
8.
R. E.
Ryltsev
and
N. M.
Chtchelkatchev
, “
Multistage structural evolution in simple monatomic supercritical fluids: Superstable tetrahedral local order
,”
Phys. Rev. E
88
,
052101
(
2013
).
9.
N. D.
Orekhov
and
V. V.
Stegailov
, “
Graphite melting: Atomistic kinetics bridges theory and experiment
,”
Carbon
87
,
358
364
(
2015
).
10.
A. V.
Lyulin
,
N. K.
Balabaev
,
A. R. C.
Baljon
,
G.
Mendoza
,
C. W.
Frank
, and
D. Y.
Yoon
, “
Interfacial and topological effects on the glass transition in free-standing polystyrene films
,”
J. Chem. Phys.
146
,
203314
(
2017
).
11.
A. O.
Kurbatov
,
N. K.
Balabaev
,
M. A.
Mazo
, and
E. Y.
Kramarenko
, “
Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups
,”
J. Chem. Phys.
148
,
014902
(
2018
).
12.
Q.-L.
Liu
and
N. V.
Priezjev
, “
The influence of complex thermal treatment on mechanical properties of amorphous materials
,”
Comput. Mater. Sci.
161
,
93
98
(
2019
).
13.
N. V.
Priezjev
and
M. A.
Makeev
, “
The influence of periodic shear on structural relaxation and pore redistribution in binary glasses
,”
J. Non-Cryst. Solids
506
,
14
20
(
2019
).
14.
W.
Allen
and
R. L.
Rowley
, “
Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models
,”
J. Chem. Phys.
106
,
10273
(
1997
).
15.
J. D.
Moore
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
, “
Rheology of lubricant basestocks: A molecular dynamics study of C30 isomers
,”
J. Chem. Phys.
113
,
8833
(
2000
).
16.
L. I.
Kioupis
and
E. J.
Maginn
, “
Impact of molecular architecture on the high-pressure rheology of hydrocarbon fluids
,”
J. Phys. Chem. B
104
,
7774
7783
(
2000
).
17.
C.
McCabe
,
S.
Cui
,
P. T.
Cummings
,
P. A.
Gordon
, and
R. B.
Saeger
, “
Examining the rheology of 9-octylheptadecane to giga-pascal pressures
,”
J. Chem. Phys.
114
,
1887
1891
(
2001
).
18.
S.
Bair
,
C.
McCabe
, and
P. T.
Cummings
, “
Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime
,”
Phys. Rev. Lett.
88
,
058302
(
2002
).
19.
C.
McCabe
,
S.
Cui
, and
P. T.
Cummings
, “
Characterizing the viscosity–temperature dependence of lubricants by molecular simulation
,”
Fluid Phase Equilib.
183-184
,
363
370
(
2001
).
20.
J. P.
Ewen
,
C.
Gattinoni
,
F. M.
Thakkar
,
N.
Morgan
,
H. A.
Spikes
, and
D.
Dini
, “
A comparison of classical force-fields for molecular dynamics simulations of lubricants
,”
Materials
9
,
651
(
2016
); e-print arXiv:1706.00179.
21.
S.
Rahman
,
O.
Lobanova
,
G.
Jiménez-Serratos
,
C.
Braga
,
V.
Raptis
,
E. A.
Müller
,
G.
Jackson
,
C.
Avendaño
, and
A.
Galindo
, “
Saft-γ force field for the simulation of molecular fluids. 5. Hetero-group coarse-grained models of linear alkanes and the importance of intramolecular interactions
,”
J. Phys. Chem. B
122
,
9161
9177
(
2018
).
22.
V.
Pisarev
and
S.
Mistry
, “
Volume-based mixing rules for viscosities of methane + n-butane liquid mixtures
,”
Fluid Phase Equilib.
484
,
98
105
(
2019
).
23.
J. P.
Ewen
,
D. M.
Heyes
, and
D.
Dini
, “
Advances in nonequilibrium molecular dynamics simulations of lubricants and additives
,”
Friction
6
,
349
(
2018
).
24.
D. J.
Evans
and
P. T.
Cummings
, “
Nonequilibrium molecular dynamics properties and non Newtonian fluid approaches to transport rheology
,”
Ind. Eng. Chem. Res.
31
,
1237
1252
(
1992
).
25.
V.
Jadhao
and
M. O.
Robbins
, “
Probing large viscosities in glass-formers with nonequilibrium simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
7952
(
2017
).
26.
M. A. G.
Cunha
and
M. O.
Robbins
, “
Determination of pressure-viscosity relation of 2,2,4-trimethylhexane by all-atom molecular dynamics simulations
,”
Fluid Phase Equilib.
495
,
28
32
(
2019
); e-print arXiv:1902.01493.
27.
E.
Helfand
, “
Transport coefficients from dissipation in a canonical ensemble
,”
Phys. Rev.
119
,
1
9
(
1960
).
28.
D.
Nevins
and
F. J.
Spera
, “
Accurate computation of shear viscosity from equilibrium molecular dynamics simulations
,”
Mol. Simul.
33
,
1261
1266
(
2007
).
29.
Y. D.
Fomin
,
V. V.
Brazhkin
, and
V. N.
Ryzhov
, “
Transport coefficients of soft sphere fluid at high densities
,”
JETP Lett.
95
,
320
325
(
2012
).
30.
Y. D.
Fomin
,
V. V.
Brazhkin
, and
V. N.
Ryzhov
, “
Isoviscosity lines and the liquid-glass transition in simple liquids
,”
Phys. Rev. E
86
,
011503
(
2012
).
31.
V. Y.
Rudyak
and
S. L.
Krasnolutskii
, “
Dependence of the viscosity of nanofluids on nanoparticle size and material
,”
Phys. Lett. A
378
,
1845
1849
(
2014
).
32.
V. Y.
Rudyak
and
S.
Krasnolutskii
, “
Simulation of the nanofluid viscosity coefficient by the molecular dynamics method
,”
Tech. Phys.
60
,
798
804
(
2015
).
33.
M.
Chen
,
J. R.
Vella
,
A. Z.
Panagiotopoulos
,
P. G.
Debenedetti
,
F. H.
Stillinger
, and
E. A.
Carter
, “
Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method
,”
AIChE J.
61
,
2841
2853
(
2015
).
34.
Y.
Zhang
,
A.
Otani
, and
E. J.
Maginn
, “
Reliable viscosity calculation from equilibrium molecular dynamics simulations: A time decomposition method
,”
J. Chem. Theory Comput.
11
,
3537
3546
(
2015
).
35.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
,
209
217
(
2002
).
36.
C.
Rey-Castro
and
L. F.
Vega
, “
Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature
,”
J. Phys. Chem. B
110
,
14426
14435
(
2006
).
37.
Y.
Zhang
,
L.
Xue
,
F.
Khabaz
,
R.
Doerfler
,
E. L.
Quitevis
,
R.
Khare
, and
E. J.
Maginn
, “
Molecular topology and local dynamics govern the viscosity of imidazolium-based ionic liquids
,”
J. Phys. Chem. B
119
,
14934
14944
(
2015
).
38.
O. A.
Moultos
,
Y.
Zhang
,
I. N.
Tsimpanogiannis
,
I. G.
Economou
, and
E. J.
Maginn
, “
System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers
,”
J. Chem. Phys.
145
,
074109
(
2016
).
39.
N. D.
Kondratyuk
and
V. V.
Pisarev
, “
Calculation of viscosities of branched alkanes from 0.1 to 1000 MPa by molecular dynamics methods using compass force field
,”
Fluid Phase Equilib.
498
,
151
159
(
2019
).
40.
K. S.
Kim
,
M. H.
Han
,
C.
Kim
,
Z.
Li
,
G. E.
Karniadakis
, and
E. K.
Lee
, “
Nature of intrinsic uncertainties in equilibrium molecular dynamics estimation of shear viscosity for simple and complex fluids
,”
J. Chem. Phys.
149
,
044510
(
2018
); e-print arXiv:1807.08063.
41.
K.
Meier
,
A.
Laesecke
, and
S.
Kabelac
, “
Transport coefficients of the Lennard-Jones model fluid. II. Self-diffusion
,”
J. Chem. Phys.
121
,
9526
9535
(
2004
).
42.
C.-F.
Fu
and
S. X.
Tian
, “
A comparative study for molecular dynamics simulations of liquid benzene
,”
J. Chem. Theory Comput.
7
,
2240
2252
(
2011
).
43.
F.
Jaeger
,
O. K.
Matar
, and
E. A.
Müller
, “
Bulk viscosity of molecular fluids
,”
J. Chem. Phys.
148
,
174504
(
2018
).
44.
F.
Müller-Plathe
, “
Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids
,”
Phys. Rev. E
59
,
4894
4898
(
1999
).
45.
P.
Bordat
and
F.
Müller-Plathe
, “
The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics
,”
J. Chem. Phys.
116
,
3362
3369
(
2002
).
46.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
47.
I. C.
Yeh
and
G.
Hummer
, “
System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,”
J. Phys. Chem. B
108
,
15873
15879
(
2004
).
48.
N. D.
Kondratyuk
,
G. E.
Norman
, and
V. V.
Stegailov
, “
Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes
,”
J. Chem. Phys.
145
,
204504
(
2016
).
49.
N. A.
Volkov
,
M. V.
Posysoev
, and
A. K.
Shchekin
, “
The effect of simulation cell size on the diffusion coefficient of an ionic surfactant aggregate
,”
Colloid J.
80
,
248
254
(
2018
).
50.
G.
Feng
,
M.
Chen
,
S.
Bi
,
Z. A.
Goodwin
,
E. B.
Postnikov
,
N.
Brilliantov
,
M.
Urbakh
, and
A. A.
Kornyshev
, “
Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox
,”
Phys. Rev. X
9
,
021024
(
2019
).
51.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
New York
,
1989
).
52.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
53.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
54.
W. M.
Brown
,
P.
Wang
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers - short range forces
,”
Comput. Phys. Commun.
182
,
898
911
(
2011
).
55.
W. M.
Brown
,
A.
Kohlmeyer
,
S. J.
Plimpton
, and
A. N.
Tharrington
, “
Implementing molecular dynamics on hybrid high performance computers - particle-particle particle-mesh
,”
Comput. Phys. Commun.
183
,
449
459
(
2012
).
56.
V.
Stegailov
,
A.
Agarkov
,
S.
Biryukov
,
T.
Ismagilov
,
M.
Khalilov
,
N.
Kondratyuk
,
E.
Kushtanov
,
D.
Makagon
,
A.
Mukosey
,
A.
Semenov
,
A.
Simonov
,
A.
Timofeev
, and
V.
Vecher
, “
Early performance evaluation of the hybrid cluster with torus interconnect aimed at molecular-dynamics simulations
,” in
Parallel Processing and Applied Mathematics
, edited by
R.
Wyrzykowski
,
J.
Dongarra
,
E.
Deelman
, and
K.
Karczewski
(
Springer International Publishing
,
Cham
,
2018
), pp.
327
336
.
57.
N.
Kondratyuk
,
G.
Smirnov
,
E.
Dlinnova
,
S.
Biryukov
, and
V.
Stegailov
, “
Hybrid supercomputer Desmos with Torus Angara interconnect: Efficiency analysis and optimization
,” in
Parallel Computational Technologies
, edited by
L.
Sokolinsky
and
M.
Zymbler
(
Springer International Publishing
,
Cham
,
2018
), pp.
77
91
.
58.
N.
Kondratyuk
,
G.
Smirnov
, and
V.
Stegailov
, “
Hybrid codes for atomistic simulations on the Desmos supercomputer: GPU-acceleration, scalability and parallel I/O
,” in
Supercomputing
, edited by
V.
Voevodin
and
S.
Sobolev
(
Springer International Publishing
,
Cham
,
2019
), pp.
218
229
.
59.
V.
Stegailov
,
E.
Dlinnova
,
T.
Ismagilov
,
M.
Khalilov
,
N.
Kondratyuk
,
D.
Makagon
,
A.
Semenov
,
A.
Simonov
,
G.
Smirnov
, and
A.
Timofeev
, “
Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations
,”
Int. J. High Perform. Comput. Appl.
33
(
3
),
507
(
2019
).
60.
P.
Gordon
, “
Influence of simulation details on thermodynamic and transport properties in molecular dynamics of fully flexible molecular models
,”
Mol. Simul.
29
,
479
487
(
2003
).
61.
J.
Kendall
and
K. P.
Monroe
, “
The viscosity of liquids. II. The viscosity-composition curve for ideal liquid mixtures
,”
J. Am. Chem. Soc.
39
,
1787
1802
(
1917
).
62.
D. G.
Friend
,
H.
Ingham
, and
J. F.
Fly
, “
Thermophysical properties of ethane
,”
J. Phys. Chem. Ref. Data
20
,
275
347
(
1991
).
63.
E.
Vogel
,
C.
Kuechenmeister
,
E.
Bich
, and
A.
Laesecke
, “
Reference correlation of the viscosity of propane
,”
J. Phys. Chem. Ref. Data
27
,
947
970
(
1998
).
64.
E.
Vogel
,
C.
Küchenmeister
, and
E.
Bich
, “
Viscosity correlation for n-butane in the fluid region
,”
High Temp. - High Pressures
31
,
173
186
(
1999
).
You do not currently have access to this content.