It is a challenge to obtain an accurate model of the state-to-state dynamics of a complex biological system from molecular dynamics (MD) simulations. In recent years, Markov state models have gained immense popularity for computing state-to-state dynamics from a pool of short MD simulations. However, the assumption that the underlying dynamics on the reduced space is Markovian induces a systematic bias in the model, especially in biomolecular systems with complicated energy landscapes. To address this problem, we have devised a new approach we call quasistationary distribution kinetic Monte Carlo (QSD-KMC) that gives accurate long time state-to-state evolution while retaining the entire time resolution even when the dynamics is highly non-Markovian. The proposed method is a kinetic Monte Carlo approach that takes advantage of two concepts: (i) the quasistationary distribution, the distribution that results when a trajectory remains in one state for a long time (the dephasing time), such that the next escape is Markovian, and (ii) dynamical corrections theory, which properly accounts for the correlated events that occur as a trajectory passes from state to state before it settles again. In practice, this is achieved by specifying, for each escape, the intermediate states and the final state that has resulted from the escape. Implementation of QSD-KMC imposes stricter requirements on the lengths of the trajectories than in a Markov state model approach as the trajectories must be long enough to dephase. However, the QSD-KMC model produces state-to-state trajectories that are statistically indistinguishable from an MD trajectory mapped onto the discrete set of states for an arbitrary choice of state decomposition. Furthermore, the aforementioned concepts can be used to construct a Monte Carlo approach to optimize the state boundaries regardless of the initial choice of states. We demonstrate the QSD-KMC method on two one-dimensional model systems, one of which is a driven nonequilibrium system, and on two well-characterized biomolecular systems.

1.
V.
Daggett
,
Acc. Chem. Res.
35
,
422
(
2002
).
2.
Y.
Peter
,
L.
Freddolino
,
F.
Liu
,
M.
Gruebele
, and
K.
Schulten
,
Biophys. J.
94
,
L75
L77
(
2008
).
3.
S.
Gnanakaran
,
H.
Nymeyer
,
J.
Portman
,
K.
Sanbonmatsu
, and
A. E.
Garcia
,
Curr. Opin. Struct. Biol.
13
,
168
(
2003
).
4.
Y.
Arinaminpathy
,
M. S. P.
Sansom
, and
P. C.
Biggin
,
Biophys. J.
82
,
676
(
2002
).
5.
A.
Bhinge
,
P.
Chakrabarti
,
K.
Uthanumallian
,
K.
Bajaj
,
K.
Chakraborty
, and
R.
Varadarajan
,
Structure
12
,
1989
(
2004
).
6.
F.
Trovato
and
G.
Fumagalli
,
Biophys. Rev.
9
,
941
(
2017
).
7.
A. L.
Beberg
,
D. L.
Ensign
,
G.
Jayachandran
,
S.
Khaliq
, and
V. S.
Pande
, in
IEEE International Symposium on Parallel and Distributed Processing
(
IEEE
,
2009
), p.
1530
.
8.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
,
J. Am. Chem. Soc.
132
,
1526
(
2010
).
9.
J.
Deppe
,
R. F.
Wallis
,
I.
Nachev
, and
M.
Balkanski
,
J. Phys. Chem. Solids
55
,
759
(
1994
).
10.
G.
Martin
,
F.
Soisson
, and
P.
Bellon
,
J. Nucl. Mater.
205
,
301
(
1993
).
11.
H.
Xu
,
Y. N.
Osetsky
, and
R. E.
Stoller
,
J. Nucl. Mater.
423
,
102
(
2012
).
12.
E.
Antoshchenkova
,
M.
Hayoun
,
F.
Finocchi
, and
G.
Geneste
,
Surf. Sci.
606
,
605
(
2012
).
13.
A. F.
Voter
, in
Radiation Effects in Solids
, edited by
K. E.
Sickafus
,
E. A.
Kotomin
, and
B. P.
Uberuaga
(
Springer, NATO Publishing Unit
,
Dordrecht, The Netherlands
,
2006
), p.
1
.
14.
E.
Suarez
,
A. J.
Pratt
,
L. T.
Chong
, and
D. M.
Zuckerman
,
Protein Sci.
25
,
67
(
2016
).
15.
E.
Suarez
,
J. L.
Adelman
, and
D. M.
Zuckerman
,
J. Chem. Theory Comput.
12
,
3473
(
2016
).
16.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
17.
C.
Le Bris
,
T.
Lelievre
,
M.
Luskin
, and
D.
Perez
,
Monte Carlo Method Appl.
18
,
119
(
2012
).
18.
A.
Binder
,
T.
Lelievre
, and
G.
Simpson
,
J. Comput. Phys.
284
,
595
(
2015
).
19.
T.
Lelievre
,
Eur. Phys. J.: Spec. Top.
224
,
2429
(
2015
).
20.
D.
Perez
,
B. P.
Uberuaga
, and
A. F.
Voter
,
Comput. Mater. Sci.
100
,
90
(
2015
).
21.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
22.
R.
Ferrando
,
R.
Spadacini
, and
G. E.
Tommei
,
Phys. Rev. E
48
,
2437
(
1993
).
23.
R.
Ferrando
and
G.
Treglia
,
Phys. Rev. B
50
,
12104
(
1994
).
24.
R.
Ferrando
,
R.
Spadacini
, and
G. E.
Tommei
,
Phys. Rev. E
51
,
126
(
1995
).
25.
R.
Ferrando
and
G.
Treglia
,
Surf. Sci.
331-333
,
920
(
1995
).
26.
M. A.
Stephens
,
J. Am. Stat. Assoc.
69
,
730
(
1974
).
27.
A. F.
Voter
,
Phys. Rev. B
57
,
R13985
(
1998
).
28.
D.
Perez
,
B. P.
Uberuaga
,
Y.
Shim
,
J. G.
Amar
. and
A. F.
Voter
,
Ann. Rep. Comp. Chem.
5
,
79
(
2009
).
29.
F.
Hedin
and
T.
Lelievre
,
Comput. Phys. Commun.
239
,
311
(
2019
).
30.
D.
Perez
,
E. D.
Cubuk
,
A.
Waterland
,
E.
Kaxiras
, and
A. F.
Voter
,
J. Chem. Theory Comput.
12
,
18
(
2016
).
31.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
32.
A. F.
Voter
and
J. D.
Doll
,
J. Chem. Phys.
82
,
80
(
1985
).
33.
A. F.
Voter
,
Phys. Rev. B
34
,
6819
(
1986
).
34.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
35.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
,
Y.
Shan
, and
W.
Wriggers
,
Science
330
,
341
(
2010
).
36.
A.
Gelman
and
D. B.
Rubin
,
Stat. Sci.
7
,
457
(
1992
).
37.
W. H.
Fleming
and
M.
Viot
,
Indiana Univ. Math. J.
28
,
817
(
1979
).
38.
A.
Asselah
,
P. A.
Ferrari
, and
P.
Groisman
,
J. Appl. Probab.
48
,
322
(
2011
).
39.
G. R.
Bowman
,
D. L.
Ensing
, and
V. S.
Pande
,
J. Chem. Theory Comput.
6
,
787
(
2010
).
40.
A.
Chatterjee
and
S.
Bhattacharya
,
J. Chem. Phys.
143
,
114109
(
2015
).
41.
V. J.
Bhute
and
A.
Chatterjee
,
J. Chem. Phys.
138
,
244112
(
2013
).
42.
A.
Bhoutekar
,
S.
Ghosh
,
S.
Bhattacharya
, and
A.
Chatterjee
,
J. Chem. Phys.
147
,
152702
(
2017
).
43.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
44.
C.
Shuette
,
A.
Fisher
,
W.
Huisinga
, and
P.
Deuflhard
,
J. Comput. Phys.
151
,
146
(
1999
).
45.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
,
J. Phys. Chem. B
108
,
6571
(
2004
).
46.
N.
Singhal
,
C.
Snow
, and
V.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
47.
V.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
48.
J. H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schuette
, and
F.
Noe
,
J. Chem. Phys.
134
,
174105
(
2011
).
49.
P.
Deuflhard
,
P.
Huisinga
,
A.
Fischer
, and
C.
Shuette
,
Linear Algebra Appl.
315
,
39
(
2000
).
50.
P.
Deuflhard
and
M.
Weber
, in
Linear Algebra Applications
, edited by
M.
Dellnitz
,
S.
Kirkland
,
M.
Neumann
, and
C.
Shuette
(
Elsevier
,
New York
,
2005
), Vol. 388C, pp.
161
184
.
51.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Perez-Hernandez
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J. H.
Prinz
, and
F.
Noe
,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
52.
B.
Leimkuhler
and
C.
Matthews
,
Appl. Math. Res. Express
2013
,
34
.
53.
H.
Wang
and
A.
Agarwal
,
Eur. Phys. J.: Spec. Top.
224
,
2269
(
2015
).
54.
G.
Perez-Hernandez
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noe
,
J. Chem. Phys.
139
,
015102
(
2013
).

Supplementary Material

You do not currently have access to this content.