Molecular dynamics simulation of lipid bilayers generally uses all-atom, united-atom, and coarse-grained models of lipid molecules. The GROMOS united-atom model of lipid constructs a balance between accuracy and computational cost. The above-mentioned model satisfactorily reproduces many of the structural and dynamical properties of different lipid bilayers. However, the GROMOS force field is parameterized only with the SPC model of water. Unfortunately, SPC is not an excellent model of water for predicting the structure and dynamics of the interfacial water near the lipid bilayer. More advanced water models, such as TIP3P-FB and TIP4P-FB, outperform the SPC model in predicting different thermodynamic and microscopic properties of bulk water. This motivates us to check the compatibility of five different water models, including SPC, with the GROMOS96 53A6L united atom model of two different lipid bilayers, DPPC and POPC. A systematic comparison of the bilayer structure and dynamics, resulting from the simulations with different water models, is done. We find general agreement of the results for different water models with the experiment. In fact, the more advanced water models provide better agreement with the experiment. This study, therefore, helps in widening the range of choice of water models in simulating the lipid bilayer using the GROMOS united-atom model of the lipid molecules.

1.
A. D.
MacKerell
,
J.
Wiorkiewicz-Kuczera
, and
M.
Karplus
,
J. Am. Chem. Soc.
117
,
11946
(
1995
).
2.
A. D.
MacKerell
 et al,
J. Phys. Chem. B
102
,
3586
(
1998
).
3.
S. E.
Feller
 et al,
Biophys. J.
73
,
2269
(
1997
).
4.
J. B.
Klauda
 et al,
J. Phys. Chem. B
114
,
7830
(
2010
).
5.
J. B.
Klauda
 et al,
J. Phys. Chem. B
109
,
5300
(
2005
).
6.
K. V.
Damodaran
,
K. M.
Merz
, and
B. P.
Gaber
,
Biochemistry
31
,
7656
(
1992
).
7.
U.
Essmann
,
L.
Perera
, and
M. L.
Berkowitz
,
Langmuir
11
,
4519
(
1995
).
8.
P. B.
Moore
,
C. F.
Lopez
, and
M. L.
Klein
,
Biophys. J.
81
,
2484
(
2001
).
9.
J.
Wang
 et al,
J. Comput. Chem.
25
,
1157
(
2004
).
10.
B.
Jojart
and
T. A.
Martinek
,
J. Comput. Chem.
28
,
2051
(
2007
).
11.
C. F.
Lopez
 et al,
J. Phys. Chem. B
108
,
6603
(
2004
).
12.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
13.
A.
Maciejewski
 et al,
J. Phys. Chem. B
118
,
4571
(
2014
).
14.
W.
Kulig
,
M.
Pasenkiewicz-Gierula
, and
T.
Rog
,
Chem. Phys. Lipids
195
,
12
(
2016
).
15.
J. P. M.
Jämbeck
and
A. P.
Lyubartsev
,
J. Phys. Chem. B
116
,
3164
(
2012
).
16.
J. P. M.
Jambeck
and
A. P.
Lyubartsev
,
J. Chem. Theory Comput.
8
,
2938
(
2012
).
17.
K.
Pluhackova
 et al,
J. Phys. Chem. B
120
,
3888
(
2016
).
18.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
19.
S. J.
Marrink
 et al,
J. Phys. Chem. B
119
,
6184
(
2019
).
20.
S. J.
Marrink
 et al,
Chem. Rev.
119
,
6184
(
2019
).
21.
J.
Hermans
 et al,
Biopolymers
23
,
1513
(
1984
).
22.
L. D.
Schuler
,
X.
Daura
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
22
,
1205
(
2001
).
23.
I.
Chandrasekhar
 et al,
Eur. Biophys. J.
32
,
67
(
2003
).
24.
O.
Berger
,
O.
Edholm
, and
F.
Jähnig
,
Biophys. J.
72
,
2002
(
1997
).
25.
W. V.
Gunsteren
and
H.
Berendsen
,
Netherlands: Biomos
(
1987
), http://www.gromos.net/gromos87/GROMOS87_manual.pdf.
26.
X.
Daura
,
A. E.
Mark
, and
W. F.
Van Gunsteren
,
J. Comput. Chem.
19
,
535
(
1998
).
27.
C.
Oostenbrink
 et al,
J. Comput. Chem.
25
,
1656
(
2004
).
28.
D.
Poger
and
A. E.
Mark
,
J. Chem. Theory Comput.
6
,
325
(
2010
).
29.
D. J.
Price
and
C. L.
Brooks
 III
,
J. Chem. Phys.
121
,
10096
(
2004
).
30.
I. G.
Tironi
,
R. M.
Brunne
, and
W. F.
van Gunsteren
,
Chem. Phys. Lett.
250
,
19
(
1996
).
31.
C. J.
Högberg
,
A. M.
Nikitin
, and
A. P.
Lyubartsev
,
J. Comput. Chem.
29
,
2359
(
2008
).
32.
F.
Sajadi
and
C. N.
Rowley
,
PeerJ
6
,
e5472
(
2018
).
33.
A.
Srivastava
,
S.
Malik
, and
A.
Debnath
,
Chem. Phys.
525
,
110396
(
2019
).
34.
L.-P.
Wang
,
T. J.
Martinez
, and
V. S.
Pande
,
J. Phys. Chem. Lett.
5
,
1885
(
2014
).
35.
J. L.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
36.
C. L.
Moyer
and
R. Y.
Morita
,
Encyclopedia of Life Sciences
(
Wiley
,
2007
), Vol. 1.
37.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
38.
A.
Glättli
,
X.
Daura
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
116
,
9811
(
2002
).
39.
H. S.
Ashbaugh
 et al,
J. Chem. Phys.
132
,
124504
(
2010
).
40.
C.
Vega
,
E.
Sanz
, and
J.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
41.
C.
Vega
and
J.
Abascal
,
J. Chem. Phys.
123
,
144504
(
2005
).
42.
L.
Martínez
 et al,
J. Comput. Chem.
30
,
2157
(
2009
).
43.
N.
Kučerka
,
S.
Tristram-Nagle
, and
J. F.
Nagle
,
The J. Membr. Biol.
208
,
193
(
2006
).
44.
N.
Kucerka
 et al,
Biophys. J.
95
,
2356
(
2008
).
45.
D.
Van Der Spoel
 et al,
J. Comput. Chem.
26
,
1701
(
2005
).
47.
R. N.
Lewis
,
B. D.
Sykes
, and
R. N.
McElhaney
,
Biochemistry
27
,
880
(
1988
).
48.
S.
Mabrey
and
J. M.
Sturtevant
,
Proc. Natl. Acad. Sci. U. S. A.
73
,
3862
(
1976
).
49.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
50.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
51.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
52.
Y.
Liu
and
J. F.
Nagle
,
Phys. Rev. E
69
,
040901
(
2004
).
53.
J. B.
Fournier
,
A.
Ajdari
, and
L.
Peliti
,
Phys. Rev. Lett.
86
,
4970
(
2001
).
54.
D.
Poger
,
B.
Caron
, and
A. E.
Mark
,
Biochim. Biophys. Acta, Biomembr.
1858
,
1556
(
2016
).
55.
J. M.
Smaby
 et al,
Biophys. J.
73
,
1492
(
1997
).
56.
G.
Büldt
 et al,
J. Mol. Biol.
134
,
673
(
1979
).
57.
R. L.
Thurmond
,
S. W.
Dodd
, and
M. F.
Brown
,
Biophys. J.
59
,
108
(
1991
).
58.
H.
Heller
,
M.
Schaefer
, and
K.
Schulten
,
J. Phys. Chem.
97
,
8343
(
1993
).
59.
S.-W.
Chiu
 et al,
J. Phys. Chem. B
113
,
2748
(
2009
).
60.
H.
Binder
and
K.
Gawrisch
,
J. Phys. Chem. B
105
,
12378
(
2001
).
61.
J. F.
Nagle
and
S.
Tristram-Nagle
,
Biochim. Biophys. Acta, Biomembr.
1469
,
159
(
2000
).
62.
E.
Lindahl
and
O.
Edholm
,
Biophys. J.
79
,
426
(
2000
).
63.
C.
Anézo
 et al,
J. Phys. Chem. B
107
,
9424
(
2003
).
64.
C.-H.
Huang
and
J. P.
Charlton
,
J. Biol. Chem.
246
,
2555
(
1971
), http://www.jbc.org/content/246/8/2555.
65.
M. C.
Wiener
 et al,
Biochim. Biophys. Acta, Biomembr.
938
,
135
(
1988
), .
66.
S.
Tristram-Nagle
,
H. I.
Petrache
, and
J. F.
Nagle
,
Biophys. J.
75
,
917
(
1998
).
67.
D. L.
Melchior
and
H. J.
Morowitz
,
Biochemistry
11
,
4558
(
1972
).
68.
D.
Wilkinson
and
J.
Nagle
,
Anal. Biochem.
84
,
263
(
1978
).
69.
S. H.
White
,
R. E.
Jacobs
, and
G. I.
King
,
Biophys. J.
52
,
663
(
1987
).
70.
M.
Posch
 et al,
J. Biol. Chem.
258
,
1761
(
1983
), http://www.jbc.org/content/258/3/1761.short.
71.
R.
Koynova
 et al,
Chem. Phys. Lipids
48
,
205
(
1988
).
72.
D.
Uhríková
 et al,
Chem. Phys. Lipids
145
,
97
(
2007
).
73.
R. S.
Armen
,
O. D.
Uitto
, and
S. E.
Feller
,
Biophys. J.
75
,
734
(
1998
).
74.
G.
Pabst
 et al,
Phys. Rev. E
62
,
4000
(
2000
).
75.
L. J.
Lis
 et al,
Biophys. J.
37
,
657
(
1982
).
76.
N.
Kučerka
,
J.
Katsaras
, and
J. F.
Nagle
,
J. Membr. Biol.
235
,
43
(
2010
).
77.
78.
N.
Kučerka
 et al,
Biophys. J.
95
,
2792
(
2008
).
79.
M.
Roark
and
S. E.
Feller
,
J. Phys. Chem. B
113
,
13229
(
2009
).
80.
N.
Kucerka
 et al,
J. Phys. Chem. B
116
,
232
(
2012
).
81.
J. P.
Jämbeck
and
A. P.
Lyubartsev
,
J. Chem. Theory Comput.
9
,
774
(
2012
).
82.
J. B.
Klauda
 et al,
Biophys. J.
90
,
2796
(
2006
).
83.
P.
Niemelä
,
M. T.
Hyvönen
, and
I.
Vattulainen
,
Biophys. J.
87
,
2976
(
2004
).
84.
R. C.
Van Lehn
and
A.
Alexander-Katz
,
J. Phys. Chem. B
118
,
12586
(
2014
).
85.
T. J.
Piggot
 et al,
J. Chem. Theory Comput.
13
,
5683
(
2017
).
86.
S.
Ollila
,
M. T.
Hyvönen
, and
I.
Vattulainen
,
J. Phys. Chem. B
111
,
3139
(
2007
).
87.
T.
Huber
 et al,
J. Am. Chem. Soc.
124
,
298
(
2002
).
88.
H. I.
Petrache
,
S. W.
Dodd
, and
M. F.
Brown
,
Biophys. J.
79
,
3172
(
2000
).
89.
J.
Seelig
and
N.
Waespe-Sarcevic
,
Biochemistry
17
,
3310
(
1978
).
90.
J. P.
Doux
,
B. A.
Hall
, and
J. A.
Killian
,
Biophys. J.
103
,
1245
(
2012
).
92.
L.
Saiz
and
M. L.
Klein
,
J. Chem. Phys.
116
,
3052
(
2002
).
93.
S.
Indra
and
S.
Daschakraborty
,
Chem. Phys. Lett.
685
,
322
(
2017
).
94.
V.
Dubey
,
N.
Kumar
, and
S.
Daschakraborty
,
J. Phys. Chem. B
122
,
7569
(
2018
).
95.
A.
Filippov
,
G.
Orädd
, and
G.
Lindblom
,
Biophys. J.
84
,
3079
(
2003
).
96.
G.
Lindblom
,
G.
Orädd
, and
A.
Filippov
,
Chem. Phys. Lipids
141
,
179
(
2006
).

Supplementary Material

You do not currently have access to this content.