Accurate characterization of wettability of minerals is important for efficient oil recovery and carbon geosequestration. In studies where molecular dynamics simulations are used to compute the contact angle, emphasis is often placed on results or theoretical details of the simulations themselves, overlooking potentially applicable methodologies for determination of the contact angle. In this manuscript, a concept of a method utilizing spheroidal geometric constructions to estimate the contact angle of a water droplet on a silica surface in carbon dioxide atmosphere is outlined and applied to the final snapshots of two molecular dynamics simulation runs. Two carbon dioxide pressures and two wettability modes (hydrophilic and hydrophobic) are examined to assess the method’s performance. The most stable 6-membered ellipselike rings (001) pristine surface of alpha-quartz is reconstructed using molecular dynamics and its wettability is then investigated for the first time. The outcomes of the calculations are compared with results produced with the isodensity chart method, and good agreement with the latter approach is demonstrated. The proposed method can be used as an alternative, or in conjunction with other techniques, to increase the confidence in contact angle estimations via molecular mechanics calculations. Reliable contact angle estimations, on the other hand, can guarantee accurate storage capacity and security of carbon capture and storage projects.

1.
IPCC Carbon Dioxide Capture and Storage; Intergovernmental Panel on Climate Change: 2005,
2005
.
2.
S.
Iglauer
,
A. Z.
Al-Yaseri
,
R.
Rezaee
, and
M.
Lebedev
, “
CO2 wettability of caprocks: Implications for structural storage capacity and containment security
,”
Geophys. Res. Lett.
42
(
21
),
9279
9284
, https://doi.org/10.1002/2015gl065787 (
2015
).
3.
S.
Iglauer
, “
CO2–Water–Rock wettability: Variability, influencing factors, and implications for CO2 geostorage
,”
Acc. Chem. Res.
50
(
5
),
1134
1142
(
2017
).
4.
S.
Iglauer
,
C. H.
Pentland
, and
A.
Busch
, “
CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration
,”
Water Resour. Res.
51
(
1
),
729
774
, https://doi.org/10.1002/2014wr015553 (
2014
).
5.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Effect of surface polarity on water contact angle and interfacial hydration structure
,”
J. Phys. Chem. B
111
(
32
),
9581
9587
(
2007
).
6.
S. A.
Bagherzadeh
,
P.
Englezos
,
S.
Alavi
, and
J. A.
Ripmeester
, “
Influence of hydrated silica surfaces on interfacial water in the presence of clathrate hydrate forming gases
,”
J. Phys. Chem. C
116
(
47
),
24907
24915
(
2012
).
7.
S.
Iglauer
,
M. S.
Mathew
, and
F.
Bresme
, “
Molecular dynamics computations of brine–CO2 interfacial tensions and brine–CO2–quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration
,”
J. Colloid Interface Sci.
386
(
1
),
405
414
(
2012
).
8.
J.
McCaughan
,
S.
Iglauer
, and
F.
Bresme
, “
Molecular dynamics simulation of water/CO2-quartz interfacial properties: Application to subsurface gas injection
,”
Energy Procedia
37
,
5387
5402
(
2013
).
9.
C.
Chen
,
J.
Wan
,
W.
Li
, and
Y.
Song
, “
Water contact angles on quartz surfaces under supercritical CO2 sequestration conditions: Experimental and molecular dynamics simulation studies
,”
Int. J. Greenhouse Gas Control
42
,
655
665
(
2015
).
10.
S.
Liu
,
X.
Yang
, and
Y.
Qin
, “
Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces
,”
Chin. Sci. Bull.
55
(
21
),
2252
2257
(
2010
).
11.
C.
Chen
,
N.
Zhang
,
W.
Li
, and
Y.
Song
, “
Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO2 sequestration conditions
,”
Environ. Sci. Technol.
49
(
24
),
14680
14687
(
2015
).
12.
C.
Chen
,
Z.
Chai
,
W.
Shen
,
W.
Li
, and
Y.
Song
, “
Wettability of supercritical CO2–brine–mineral: The effects of ion type and salinity
,”
Energy Fuels
31
(
7
),
7317
7324
(
2017
).
13.
C.
Chen
,
Z.
Chai
,
W.
Shen
, and
W.
Li
, “
Effects of impurities on CO2 sequestration in saline aquifers: Perspective of interfacial tension and wettability
,”
Ind. Eng. Chem. Res.
57
(
1
),
371
379
(
2018
).
14.
C. M.
Tenney
and
R. T.
Cygan
, “
Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles
,”
Environ. Sci. Technol.
48
(
3
),
2035
2042
(
2014
).
15.
S.
Tsuji
,
Y.
Liang
,
M.
Kunieda
,
S.
Takahashi
, and
T.
Matsuoka
, “
Molecular dynamics simulations of the CO2-Water-silica interfacial systems
,”
Energy Procedia
37
,
5435
5442
(
2013
).
16.
Y.
Liang
,
S.
Tsuji
,
J.
Jia
,
T.
Tsuji
, and
T.
Matsuoka
, “
Modeling CO2–water–mineral wettability and mineralization for carbon geosequestration
,”
Acc. Chem. Res.
50
(
7
),
1530
1540
(
2017
).
17.
G.
Javanbakht
,
M.
Sedghi
,
W.
Welch
, and
L.
Goual
, “
Molecular dynamics simulations of CO2/water/quartz interfacial properties: Impact of CO2 dissolution in water
,”
Langmuir
31
(
21
),
5812
5819
(
2015
).
18.
Y.
Deng
,
L.
Xu
,
H.
Lu
,
H.
Wang
, and
Y.
Shi
, “
Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy
,”
Chem. Eng. Sci.
177
,
445
454
(
2018
).
19.
S.
Ravipati
,
B.
Aymard
,
S.
Kalliadasis
, and
A.
Galindo
, “
On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations
,”
J. Chem. Phys.
148
(
16
),
164704
(
2018
).
20.
Y.-W.
Chen
,
C.
Cao
, and
H.-P.
Cheng
, “
Finding stable α-quartz (0001) surface structures via simulations
,”
Appl. Phys. Lett.
93
(
18
),
181911
(
2008
).
21.
N. H.
de Leeuw
,
F. M.
Higgins
, and
S. C.
Parker
, “
Modeling the surface structure and stability of α-quartz
,”
J. Phys. Chem. B
103
(
8
),
1270
1277
(
1999
).
22.
S. D.
Eder
,
K.
Fladischer
,
S. R.
Yeandel
,
A.
Lelarge
,
S. C.
Parker
,
E.
Søndergård
, and
B.
Holst
, “
A giant reconstruction of α-quartz (0001) interpreted as three domains of nano dauphine twins
,”
Sci. Rep.
5
,
14545
(
2015
).
23.
O. D.
Feya
,
Q.
Wang
,
S. V.
Lepeshkin
,
V. S.
Baturin
,
Y. A.
Uspenskii
, and
A. R.
Oganov
, “
Tetrahedral honeycomb surface reconstructions of quartz, cristobalite and stishovite
,”
Sci. Rep.
8
(
1
),
11947
(
2018
).
24.
O. I.
Malyi
,
V. V.
Kulish
, and
C.
Persson
, “
In search of new reconstructions of (001) α-quartz surface: A first principles study
,”
RSC Adv.
4
(
98
),
55599
55603
(
2014
).
25.
F.
Franks
,
Water: A Matrix of Life
, 2nd ed. (
The Royal Society of Chemistry
,
2000
).
26.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
, “
DL_POLY_3: New dimensions in molecular dynamics simulations via massive parallelism
,”
J. Mater. Chem.
16
(
20
),
1911
1918
(
2006
).
27.
I. J.
Bush
,
I. T.
Todorov
, and
W.
Smith
, “
A DAFT DL_POLY distributed memory adaptation of the smoothed particle mesh Ewald method
,”
Comput. Phys. Commun.
175
(
5
),
323
329
(
2006
).
28.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
29.
K.
Momma
and
F.
Izumi
, “
VESTA: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
(
3
),
653
658
(
2008
).
30.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
(
1
),
637
649
(
1982
).
31.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
32.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
(
2
),
255
268
(
1984
).
33.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
(
19
),
8577
8593
(
1995
).
34.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
35.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
, “
Force fields for silicas and aluminophosphates based on ab initio calculations
,”
Phys. Rev. Lett.
64
(
16
),
1955
1958
(
1990
).
36.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
37.
J. G.
Harris
and
K. H.
Yung
, “
Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model
,”
J. Phys. Chem.
99
(
31
),
12021
12024
(
1995
).
38.
R. A.
Buckingham
, “
The classical equation of state of gaseous helium, neon and argon
,”
Proc. R. Soc. London, Ser. A
168
(
933
),
264
283
(
1938
).
39.
H. A.
Lorentz
, “
Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase
,”
Ann. Phys.
248
(
1
),
127
136
(
1881
).
40.
D.
Berthelot
, “
Sur le mélange des gaz
,”
C. R. Seances Acad. Sci.
126
,
1703
1855
(
1898
).
41.
L.
Levien
,
C. T.
Prewitt
, and
D. J.
Weidner
, “
Structure and elastic properties of quartz at pressure
,”
Am. Mineral.
65
(
9-10
),
920
930
(
1980
).
42.
W. A.
Adeagbo
,
N. L.
Doltsinis
,
K.
Klevakina
, and
J.
Renner
, “
Transport processes at α-quartz–water interfaces: Insights from first-principles molecular dynamics simulations
,”
ChemPhysChem
9
(
7
),
994
1002
(
2008
).
43.
See https://webbook.nist.gov/chemistry/ for webbook.nist.gov NIST Chemistry WebBook.
44.
P. K.
Bikkina
, “
Contact angle measurements of CO2-water-quartz/calcite systems in the perspective of carbon sequestration
,”
Int. J. Greenhouse Gas Control
5
(
5
),
1259
1271
(
2011
).
You do not currently have access to this content.